Self-Parameterization Based Multi-Resolution Mesh Convolution Networks
- URL: http://arxiv.org/abs/2408.13762v1
- Date: Sun, 25 Aug 2024 08:11:22 GMT
- Title: Self-Parameterization Based Multi-Resolution Mesh Convolution Networks
- Authors: Shi Hezi, Jiang Luo, Zheng Jianmin, Zeng Jun,
- Abstract summary: This paper addresses the challenges of designing mesh convolution neural networks for 3D mesh dense prediction.
The novelty of our approach lies in two key aspects. First, we construct a multi-resolution mesh pyramid directly from the high-resolution input data.
Second, we maintain the high-resolution representation in the multi-resolution convolution network, enabling multi-scale fusions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This paper addresses the challenges of designing mesh convolution neural networks for 3D mesh dense prediction. While deep learning has achieved remarkable success in image dense prediction tasks, directly applying or extending these methods to irregular graph data, such as 3D surface meshes, is nontrivial due to the non-uniform element distribution and irregular connectivity in surface meshes which make it difficult to adapt downsampling, upsampling, and convolution operations. In addition, commonly used multiresolution networks require repeated high-to-low and then low-to-high processes to boost the performance of recovering rich, high-resolution representations. To address these challenges, this paper proposes a self-parameterization-based multi-resolution convolution network that extends existing image dense prediction architectures to 3D meshes. The novelty of our approach lies in two key aspects. First, we construct a multi-resolution mesh pyramid directly from the high-resolution input data and propose area-aware mesh downsampling/upsampling operations that use sequential bijective inter-surface mappings between different mesh resolutions. The inter-surface mapping redefines the mesh, rather than reshaping it, which thus avoids introducing unnecessary errors. Second, we maintain the high-resolution representation in the multi-resolution convolution network, enabling multi-scale fusions to exchange information across parallel multi-resolution subnetworks, rather than through connections of high-to-low resolution subnetworks in series. These features differentiate our approach from most existing mesh convolution networks and enable more accurate mesh dense predictions, which is confirmed in experiments.
Related papers
- Double-Shot 3D Shape Measurement with a Dual-Branch Network [14.749887303860717]
We propose a dual-branch Convolutional Neural Network (CNN)-Transformer network (PDCNet) to process different structured light (SL) modalities.
Within PDCNet, a Transformer branch is used to capture global perception in the fringe images, while a CNN branch is designed to collect local details in the speckle images.
We show that our method can reduce fringe order ambiguity while producing high-accuracy results on a self-made dataset.
arXiv Detail & Related papers (2024-07-19T10:49:26Z) - GFN: A graph feedforward network for resolution-invariant reduced operator learning in multifidelity applications [0.0]
This work presents a novel resolution-invariant model order reduction strategy for multifidelity applications.
We base our architecture on a novel neural network layer developed in this work, the graph feedforward network.
We exploit the method's capability of training and testing on different mesh sizes in an autoencoder-based reduction strategy for parametrised partial differential equations.
arXiv Detail & Related papers (2024-06-05T18:31:37Z) - Arbitrary-Scale Point Cloud Upsampling by Voxel-Based Network with
Latent Geometric-Consistent Learning [52.825441454264585]
We propose an arbitrary-scale Point cloud Upsampling framework using Voxel-based Network (textbfPU-VoxelNet)
Thanks to the completeness and regularity inherited from the voxel representation, voxel-based networks are capable of providing predefined grid space to approximate 3D surface.
A density-guided grid resampling method is developed to generate high-fidelity points while effectively avoiding sampling outliers.
arXiv Detail & Related papers (2024-03-08T07:31:14Z) - On Optimizing the Communication of Model Parallelism [74.15423270435949]
We study a novel and important communication pattern in large-scale model-parallel deep learning (DL)
In cross-mesh resharding, a sharded tensor needs to be sent from a source device mesh to a destination device mesh.
We propose two contributions to address cross-mesh resharding: an efficient broadcast-based communication system, and an "overlapping-friendly" pipeline schedule.
arXiv Detail & Related papers (2022-11-10T03:56:48Z) - Pyramid Grafting Network for One-Stage High Resolution Saliency
Detection [29.013012579688347]
We propose a one-stage framework called Pyramid Grafting Network (PGNet) to extract features from different resolution images independently.
An attention-based Cross-Model Grafting Module (CMGM) is proposed to enable CNN branch to combine broken detailed information more holistically.
We contribute a new Ultra-High-Resolution Saliency Detection dataset UHRSD, containing 5,920 images at 4K-8K resolutions.
arXiv Detail & Related papers (2022-04-11T12:22:21Z) - Laplacian2Mesh: Laplacian-Based Mesh Understanding [4.808061174740482]
We introduce a novel and flexible convolutional neural network (CNN) model, called Laplacian2Mesh, for 3D triangle mesh.
Mesh pooling is applied to expand the receptive field of the network by the multi-space transformation of Laplacian.
Experiments on various learning tasks applied to 3D meshes demonstrate the effectiveness and efficiency of Laplacian2Mesh.
arXiv Detail & Related papers (2022-02-01T10:10:13Z) - LocalTrans: A Multiscale Local Transformer Network for Cross-Resolution
Homography Estimation [52.63874513999119]
Cross-resolution image alignment is a key problem in multiscale giga photography.
Existing deep homography methods neglecting the explicit formulation of correspondences between them, which leads to degraded accuracy in cross-resolution challenges.
We propose a local transformer network embedded within a multiscale structure to explicitly learn correspondences between the multimodal inputs.
arXiv Detail & Related papers (2021-06-08T02:51:45Z) - Recurrent Multi-view Alignment Network for Unsupervised Surface
Registration [79.72086524370819]
Learning non-rigid registration in an end-to-end manner is challenging due to the inherent high degrees of freedom and the lack of labeled training data.
We propose to represent the non-rigid transformation with a point-wise combination of several rigid transformations.
We also introduce a differentiable loss function that measures the 3D shape similarity on the projected multi-view 2D depth images.
arXiv Detail & Related papers (2020-11-24T14:22:42Z) - Densely connected multidilated convolutional networks for dense
prediction tasks [25.75557472306157]
We propose a novel CNN architecture called densely connected multidilated DenseNet (D3Net)
D3Net involves a novel multidilated convolution that has different dilation factors in a single layer to model different resolutions simultaneously.
Experiments on the image semantic segmentation task using Cityscapes and the audio source separation task using MUSDB18 show that the proposed method has superior performance over state-of-the-art methods.
arXiv Detail & Related papers (2020-11-21T05:15:12Z) - Primal-Dual Mesh Convolutional Neural Networks [62.165239866312334]
We propose a primal-dual framework drawn from the graph-neural-network literature to triangle meshes.
Our method takes features for both edges and faces of a 3D mesh as input and dynamically aggregates them.
We provide theoretical insights of our approach using tools from the mesh-simplification literature.
arXiv Detail & Related papers (2020-10-23T14:49:02Z) - Joint Multi-Dimension Pruning via Numerical Gradient Update [120.59697866489668]
We present joint multi-dimension pruning (abbreviated as JointPruning), an effective method of pruning a network on three crucial aspects: spatial, depth and channel simultaneously.
We show that our method is optimized collaboratively across the three dimensions in a single end-to-end training and it is more efficient than the previous exhaustive methods.
arXiv Detail & Related papers (2020-05-18T17:57:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.