論文の概要: Analyzing the Impact of Splicing Artifacts in Partially Fake Speech Signals
- arxiv url: http://arxiv.org/abs/2408.13784v1
- Date: Sun, 25 Aug 2024 09:28:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 17:49:53.868070
- Title: Analyzing the Impact of Splicing Artifacts in Partially Fake Speech Signals
- Title(参考訳): 部分的フェイク音声信号におけるスプライシングアーチファクトの影響の分析
- Authors: Viola Negroni, Davide Salvi, Paolo Bestagini, Stefano Tubaro,
- Abstract要約: 我々は,信号の結合による音声トラックの解析を行い,それらのアーティファクトを調査し,既存のデータセットにバイアスが生じているかどうかを評価する。
その結果,スプライシングアーティファクトを解析することにより,ArialSpoofデータセットとHADデータセットでそれぞれ6.16%,7.36%のEERを検出できることがわかった。
- 参考スコア(独自算出の注目度): 15.595136769477614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Speech deepfake detection has recently gained significant attention within the multimedia forensics community. Related issues have also been explored, such as the identification of partially fake signals, i.e., tracks that include both real and fake speech segments. However, generating high-quality spliced audio is not as straightforward as it may appear. Spliced signals are typically created through basic signal concatenation. This process could introduce noticeable artifacts that can make the generated data easier to detect. We analyze spliced audio tracks resulting from signal concatenation, investigate their artifacts and assess whether such artifacts introduce any bias in existing datasets. Our findings reveal that by analyzing splicing artifacts, we can achieve a detection EER of 6.16% and 7.36% on PartialSpoof and HAD datasets, respectively, without needing to train any detector. These results underscore the complexities of generating reliable spliced audio data and lead to discussions that can help improve future research in this area.
- Abstract(参考訳): 音声深度検出は近年,マルチメディア法医学界で注目されている。
関連する問題としては、部分的に偽の信号、すなわち、実音声セグメントと偽音声セグメントの両方を含むトラックの識別などが挙げられる。
しかし、高品質なスプリシングオーディオを生成するのは、見かけほど簡単ではない。
スプリケート信号は通常、基本的な信号結合によって生成される。
このプロセスでは、生成したデータを検出しやすくする、注目すべきアーティファクトが導入される可能性がある。
我々は,信号の結合による音声トラックの解析を行い,それらのアーティファクトを調査し,既存のデータセットにバイアスが生じているかどうかを評価する。
その結果,スプライシングアーティファクトを解析することにより,検出EERの精度が6.16%,HADデータセットが7.36%になることがわかった。
これらの結果は、信頼性の高い音声データを生成する複雑さを浮き彫りにし、この領域における将来の研究改善に役立つ議論につながる。
関連論文リスト
- Detecting Audio-Visual Deepfakes with Fine-Grained Inconsistencies [11.671275975119089]
空間領域と時間領域の両方において微妙なアーティファクトを検出するためのきめ細かいメカニズムを提案する。
まず,音声との不整合が生じやすい小さな空間領域を撮影できる局所視覚モデルを提案する。
第2に、トレーニングセットに微妙な時間的不整合を取り入れたサンプルを含む、時間的に局所的な擬似フェイク増強を導入する。
論文 参考訳(メタデータ) (2024-08-13T09:19:59Z) - Training-Free Deepfake Voice Recognition by Leveraging Large-Scale Pre-Trained Models [52.04189118767758]
一般化は、現在のオーディオディープフェイク検出器の主な問題である。
本稿では,オーディオディープフェイク検出のための大規模事前学習モデルの可能性について検討する。
論文 参考訳(メタデータ) (2024-05-03T15:27:11Z) - An RFP dataset for Real, Fake, and Partially fake audio detection [0.36832029288386137]
RFP da-tasetは、部分的フェイク(PF)、雑音を伴う音声、音声変換(VC)、テキスト音声(TTS)、リアルの5つの異なるオーディオタイプから構成される。
その後、データは複数の検出モデルを評価するために使用され、利用可能なモデルは、完全に偽のオーディオではなく、PFオーディオを検出するときに、著しく高い等速誤差率(EER)を発生させる。
論文 参考訳(メタデータ) (2024-04-26T23:00:56Z) - Rethinking the Up-Sampling Operations in CNN-based Generative Network
for Generalizable Deepfake Detection [86.97062579515833]
我々は、アップサンプリング操作から生じる一般化された構造的アーティファクトをキャプチャし、特徴付ける手段として、NPR(Neighboring Pixel Relationships)の概念を紹介した。
tft28の異なる生成モデルによって生成されたサンプルを含む、オープンワールドデータセット上で包括的な分析を行う。
この分析は、新しい最先端のパフォーマンスを確立し、既存の手法よりも優れたtft11.6%の向上を示している。
論文 参考訳(メタデータ) (2023-12-16T14:27:06Z) - MIS-AVoiDD: Modality Invariant and Specific Representation for
Audio-Visual Deepfake Detection [4.659427498118277]
新しいタイプのディープフェイクが登場し、オーディオまたは視覚的モーダルが操作された。
既存のマルチモーダルディープフェイク検出器は、しばしばビデオからのオーディオとビジュアルストリームの融合に基づいている。
本稿では,マルチモーダルディープフェイク検出のための音声と視覚ストリームの融合を支援するために,表現レベルでの問題に取り組む。
論文 参考訳(メタデータ) (2023-10-03T17:43:24Z) - On the Possibilities of AI-Generated Text Detection [76.55825911221434]
機械が生成するテキストが人間に近い品質を近似するにつれて、検出に必要なサンプルサイズが増大すると主張している。
GPT-2, GPT-3.5-Turbo, Llama, Llama-2-13B-Chat-HF, Llama-2-70B-Chat-HFなどの最先端テキストジェネレータをoBERTa-Large/Base-Detector, GPTZeroなどの検出器に対して試験した。
論文 参考訳(メタデータ) (2023-04-10T17:47:39Z) - Deep Spectro-temporal Artifacts for Detecting Synthesized Speech [57.42110898920759]
本稿では,トラック1(低品質フェイク音声検出)とトラック2(部分フェイク音声検出)の総合評価を行う。
本稿では, 原時間信号, スペクトル特性, 深層埋没特性を用いて, 分光時相アーティファクトを検出した。
我々はそれぞれ1番線と2番線で4位と5位にランクインした。
論文 参考訳(メタデータ) (2022-10-11T08:31:30Z) - Voice-Face Homogeneity Tells Deepfake [56.334968246631725]
既存の検出アプローチは、ディープフェイクビデオにおける特定のアーティファクトの探索に寄与する。
未探索の音声-顔のマッチングビューからディープフェイク検出を行う。
我々のモデルは、他の最先端の競合と比較して、大幅に性能が向上する。
論文 参考訳(メタデータ) (2022-03-04T09:08:50Z) - Audio Defect Detection in Music with Deep Networks [8.680081568962997]
一般的な音楽コールのクリックなどのアーティファクトを、データ中心でコンテキストに敏感な検出ソリューションとして使用すること。
本稿では、エンド・ツー・エンドのエンコーダ・デコーダの構成に従って畳み込みネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-02-11T15:56:14Z) - WaveFake: A Data Set to Facilitate Audio Deepfake Detection [3.8073142980733]
本稿では,音声信号の解析に用いる信号処理技術について紹介する。
次に、2つの言語にまたがる5つの異なるネットワークアーキテクチャから9つのサンプルデータセットを収集した。
第3に,信号処理コミュニティから採用されている2つのベースラインモデルを実践者に提供し,さらなる研究を促進する。
論文 参考訳(メタデータ) (2021-11-04T12:26:34Z) - On the Frequency Bias of Generative Models [61.60834513380388]
我々は、最先端のGANトレーニングにおいて、高周波アーティファクトに対する提案手法を解析した。
既存のアプローチでは、スペクトルアーティファクトを完全に解決できないことが分かっています。
以上の結果から,識別能力の向上に大きな可能性があることが示唆された。
論文 参考訳(メタデータ) (2021-11-03T18:12:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。