LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback
- URL: http://arxiv.org/abs/2408.13915v1
- Date: Sun, 25 Aug 2024 18:47:55 GMT
- Title: LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback
- Authors: Tanushree Banerjee, Richard Zhu, Runzhe Yang, Karthik Narasimhan,
- Abstract summary: Large Language Models (LLMs) excel at generating human-like dialogues and comprehending text.
We propose a bootstrapping framework that leverages self-generated feedback to enhance LLM reasoning capabilities for lie detection.
We investigate the application of the proposed framework for detecting betrayal and deception in Diplomacy games, and compare it with feedback from professional human players.
- Score: 33.14770105185958
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Large Language Models (LLMs) excel at generating human-like dialogues and comprehending text. However, understanding the subtleties of complex exchanges in language remains a challenge. We propose a bootstrapping framework that leverages self-generated feedback to enhance LLM reasoning capabilities for lie detection. The framework consists of three stages: suggestion, feedback collection, and modification. In the suggestion stage, a cost-effective language model generates initial predictions based on game state and dialogue. The feedback-collection stage involves a language model providing feedback on these predictions. In the modification stage, a more advanced language model refines the initial predictions using the auto-generated feedback. We investigate the application of the proposed framework for detecting betrayal and deception in Diplomacy games, and compare it with feedback from professional human players. The LLM-generated feedback exhibits superior quality and significantly enhances the performance of the model. Our approach achieves a 39% improvement over the zero-shot baseline in lying-F1 without the need for any training data, rivaling state-of-the-art supervised learning results.
Related papers
- Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Is Crowdsourcing Breaking Your Bank? Cost-Effective Fine-Tuning of
Pre-trained Language Models with Proximal Policy Optimization [18.75866961339424]
ChatGPT has highlighted the potential of reinforcement learning from human feedback.
To reduce labor costs, we propose a self-supervised text ranking approach.
arXiv Detail & Related papers (2024-02-28T12:24:07Z) - Investigating the Efficacy of Large Language Models in Reflective
Assessment Methods through Chain of Thoughts Prompting [0.2552922646705803]
Chain of Thought(CoT) prompting method has been proposed as a means to enhance LLMs' proficiency in complex reasoning tasks.
The primary aim of this research is to assess how well four language models can grade reflective essays of third-year medical students.
arXiv Detail & Related papers (2023-09-30T06:25:27Z) - Are Large Language Models Really Robust to Word-Level Perturbations? [68.60618778027694]
We propose a novel rational evaluation approach that leverages pre-trained reward models as diagnostic tools.
Longer conversations manifest the comprehensive grasp of language models in terms of their proficiency in understanding questions.
Our results demonstrate that LLMs frequently exhibit vulnerability to word-level perturbations that are commonplace in daily language usage.
arXiv Detail & Related papers (2023-09-20T09:23:46Z) - Training Language Models with Language Feedback at Scale [50.70091340506957]
We introduce learning from Language Feedback (ILF), a new approach that utilizes more informative language feedback.
ILF consists of three steps that are applied iteratively: first, conditioning the language model on the input, an initial LM output, and feedback to generate refinements.
We show theoretically that ILF can be viewed as Bayesian Inference, similar to Reinforcement Learning from human feedback.
arXiv Detail & Related papers (2023-03-28T17:04:15Z) - Improving Code Generation by Training with Natural Language Feedback [69.52985513422381]
We formalize an algorithm for learning from natural language feedback at training time instead, which we call learning from Language Feedback (ILF)
ILF requires only a small amount of human-written feedback during training and does not require the same feedback at test time, making it both user-friendly and sample-efficient.
We use ILF to improve a Codegen-Mono 6.1B model's pass@1 rate by 38% relative (and 10% absolute) on the Mostly Basic Python Problems (MBPP) benchmark.
arXiv Detail & Related papers (2023-03-28T16:15:31Z) - Reflexion: Language Agents with Verbal Reinforcement Learning [44.85337947858337]
Reflexion is a novel framework to reinforce language agents not by updating weights, but through linguistic feedback.
It is flexible enough to incorporate various types (scalar values or free-form language) and sources (external or internally simulated) of feedback signals.
For example, Reflexion achieves a 91% pass@1 accuracy on the HumanEval coding benchmark, surpassing the previous state-of-the-art GPT-4 that achieves 80%.
arXiv Detail & Related papers (2023-03-20T18:08:50Z) - Chain of Hindsight Aligns Language Models with Feedback [62.68665658130472]
We propose a novel technique, Chain of Hindsight, that is easy to optimize and can learn from any form of feedback, regardless of its polarity.
We convert all types of feedback into sequences of sentences, which are then used to fine-tune the model.
By doing so, the model is trained to generate outputs based on feedback, while learning to identify and correct negative attributes or errors.
arXiv Detail & Related papers (2023-02-06T10:28:16Z) - Training Language Models with Natural Language Feedback [51.36137482891037]
We learn from language feedback on model outputs using a three-step learning algorithm.
In synthetic experiments, we first evaluate whether language models accurately incorporate feedback to produce refinements.
Using only 100 samples of human-written feedback, our learning algorithm finetunes a GPT-3 model to roughly human-level summarization.
arXiv Detail & Related papers (2022-04-29T15:06:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.