LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
- URL: http://arxiv.org/abs/2503.02972v3
- Date: Fri, 07 Mar 2025 09:31:42 GMT
- Title: LINGOLY-TOO: Disentangling Memorisation from Reasoning with Linguistic Templatisation and Orthographic Obfuscation
- Authors: Jude Khouja, Karolina Korgul, Simi Hellsten, Lingyi Yang, Vlad Neacsu, Harry Mayne, Ryan Kearns, Andrew Bean, Adam Mahdi,
- Abstract summary: We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates.<n>We apply this framework to develop LINGOLY-TOO, a challenging benchmark for linguistic reasoning.
- Score: 1.2576388595811496
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Assessing the reasoning capabilities of large language models (LLMs) is susceptible to overestimation due to data exposure of evaluation benchmarks. We introduce a framework for producing linguistic reasoning problems that reduces the effect of memorisation in model performance estimates and apply this framework to develop LINGOLY-TOO, a challenging benchmark for linguistic reasoning. By developing orthographic templates, we dynamically obfuscate the writing systems of real languages to generate numerousquestion variations. These variations preserve the reasoning steps required for each solution while reducing the likelihood of specific problem instances appearing in model training data. Our experiments demonstrate that frontier models, including Claud 3.7 Sonnet, o1-preview and DeepSeek R1, struggle with advanced reasoning. Our analysis also shows that LLMs exhibit noticeable variance in accuracy across permutations of the same problem, and on average perform better on questions appearing in their original orthography. Our findings highlight the opaque nature of response generation in LLMs and provide evidence that prior data exposure contributes to over estimating the reasoning capabilities of frontier models.
Related papers
- Beyond Chains of Thought: Benchmarking Latent-Space Reasoning Abilities in Large Language Models [0.0]
Large language models (LLMs) can perform reasoning computations both internally within their latent space and externally.
This study introduces a benchmark designed to quantify model-internal reasoning in different domains.
arXiv Detail & Related papers (2025-04-14T18:15:27Z) - The Reasoning-Memorization Interplay in Language Models Is Mediated by a Single Direction [34.86855316803838]
We identify a set of linear features in the model's residual stream that govern the balance between genuine reasoning and memory recall.<n>We show that intervening in these reasoning features helps the model more accurately activate the most relevant problem-solving capabilities during answer generation.
arXiv Detail & Related papers (2025-03-29T14:00:44Z) - Dancing with Critiques: Enhancing LLM Reasoning with Stepwise Natural Language Self-Critique [66.94905631175209]
We propose a novel inference-time scaling approach -- stepwise natural language self-critique (PANEL)<n>It employs self-generated natural language critiques as feedback to guide the step-level search process.<n>This approach bypasses the need for task-specific verifiers and the associated training overhead.
arXiv Detail & Related papers (2025-03-21T17:59:55Z) - ExpliCa: Evaluating Explicit Causal Reasoning in Large Language Models [75.05436691700572]
We introduce ExpliCa, a new dataset for evaluating Large Language Models (LLMs) in explicit causal reasoning.
We tested seven commercial and open-source LLMs on ExpliCa through prompting and perplexity-based metrics.
Surprisingly, models tend to confound temporal relations with causal ones, and their performance is also strongly influenced by the linguistic order of the events.
arXiv Detail & Related papers (2025-02-21T14:23:14Z) - Investigating the Robustness of Deductive Reasoning with Large Language Models [7.494617747914778]
Large Language Models (LLMs) have been shown to achieve impressive results for many reasoning-based Natural Language Processing (NLP) tasks.<n>It remains unclear to which extent LLMs, in both informal and autoformalisation methods, are robust on logical deduction tasks.
arXiv Detail & Related papers (2025-02-04T17:16:51Z) - JustLogic: A Comprehensive Benchmark for Evaluating Deductive Reasoning in Large Language Models [51.99046112135311]
We introduce JustLogic, a synthetically generated deductive reasoning benchmark for rigorous evaluation of Large Language Models.<n>JustLogic is highly complex, capable of generating a diverse range of linguistic patterns, vocabulary, and argument structures.<n>Our experimental results reveal that most state-of-the-art (SOTA) LLMs perform significantly worse than the human average.
arXiv Detail & Related papers (2025-01-24T15:49:10Z) - Exploring Robustness of LLMs to Sociodemographically-Conditioned Paraphrasing [7.312170216336085]
We take a broader approach to explore a wider range of variations across sociodemographic dimensions.<n>We extend the SocialIQA dataset to create diverse paraphrased sets conditioned on sociodemographic styles.<n>We find that demographic-specific paraphrasing significantly impacts the performance of language models.
arXiv Detail & Related papers (2025-01-14T17:50:06Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - Proceedings of the First International Workshop on Next-Generation Language Models for Knowledge Representation and Reasoning (NeLaMKRR 2024) [16.282850445579857]
Reasoning is an essential component of human intelligence as it plays a fundamental role in our ability to think critically.
Recent leap forward in natural language processing, with the emergence of language models based on transformers, is hinting at the possibility that these models exhibit reasoning abilities.
Despite ongoing discussions about what reasoning is in language models, it is still not easy to pin down to what extent these models are actually capable of reasoning.
arXiv Detail & Related papers (2024-10-07T02:31:47Z) - Reasoning Elicitation in Language Models via Counterfactual Feedback [17.908819732623716]
We derive novel metrics that balance accuracy in factual and counterfactual questions.<n>We propose several fine-tuning approaches that aim to elicit better reasoning mechanisms.<n>We evaluate the performance of the fine-tuned language models in a variety of realistic scenarios.
arXiv Detail & Related papers (2024-10-02T15:33:30Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
We propose a novel paradigm that uses a code-based critic model to guide steps including question-code data construction, quality control, and complementary evaluation.
Experiments across both in-domain and out-of-domain benchmarks in English and Chinese demonstrate the effectiveness of the proposed paradigm.
arXiv Detail & Related papers (2024-08-28T06:33:03Z) - LLMs are Superior Feedback Providers: Bootstrapping Reasoning for Lie Detection with Self-Generated Feedback [33.14770105185958]
Large Language Models (LLMs) excel at generating human-like dialogues and comprehending text.
We propose a bootstrapping framework that leverages self-generated feedback to enhance LLM reasoning capabilities for lie detection.
We investigate the application of the proposed framework for detecting betrayal and deception in Diplomacy games, and compare it with feedback from professional human players.
arXiv Detail & Related papers (2024-08-25T18:47:55Z) - Reasoning with Large Language Models, a Survey [2.831296564800826]
This paper reviews the rapidly expanding field of prompt-based reasoning with LLMs.
Our taxonomy identifies different ways to generate, evaluate, and control multi-step reasoning.
We find that self-improvement, self-reflection, and some meta abilities of the reasoning processes are possible through the judicious use of prompts.
arXiv Detail & Related papers (2024-07-16T08:49:35Z) - Self-training Large Language Models through Knowledge Detection [26.831873737733737]
Large language models (LLMs) often necessitate extensive labeled datasets and training compute to achieve impressive performance across downstream tasks.
This paper explores a self-training paradigm, where the LLM autonomously curates its own labels and selectively trains on unknown data samples.
Empirical evaluations demonstrate significant improvements in reducing hallucination in generation across multiple subjects.
arXiv Detail & Related papers (2024-06-17T07:25:09Z) - Prompting or Fine-tuning? Exploring Large Language Models for Causal Graph Validation [0.0]
This study explores the capability of Large Language Models to evaluate causality in causal graphs.
Our study compares two approaches: (1) prompting-based method for zero-shot and few-shot causal inference and, (2) fine-tuning language models for the causal relation prediction task.
arXiv Detail & Related papers (2024-05-29T09:06:18Z) - The Power of Question Translation Training in Multilingual Reasoning: Broadened Scope and Deepened Insights [108.40766216456413]
We propose a question alignment framework to bridge the gap between large language models' English and non-English performance.
Experiment results show it can boost multilingual performance across diverse reasoning scenarios, model families, and sizes.
We analyze representation space, generated response and data scales, and reveal how question translation training strengthens language alignment within LLMs.
arXiv Detail & Related papers (2024-05-02T14:49:50Z) - DPP-Based Adversarial Prompt Searching for Lanugage Models [56.73828162194457]
Auto-regressive Selective Replacement Ascent (ASRA) is a discrete optimization algorithm that selects prompts based on both quality and similarity with determinantal point process (DPP)
Experimental results on six different pre-trained language models demonstrate the efficacy of ASRA for eliciting toxic content.
arXiv Detail & Related papers (2024-03-01T05:28:06Z) - A Closer Look at the Self-Verification Abilities of Large Language Models in Logical Reasoning [73.77088902676306]
We take a closer look at the self-verification abilities of large language models (LLMs) in the context of logical reasoning.
Our main findings suggest that existing LLMs could struggle to identify fallacious reasoning steps accurately and may fall short of guaranteeing the validity of self-verification methods.
arXiv Detail & Related papers (2023-11-14T07:13:10Z) - From Heuristic to Analytic: Cognitively Motivated Strategies for
Coherent Physical Commonsense Reasoning [66.98861219674039]
Heuristic-Analytic Reasoning (HAR) strategies drastically improve the coherence of rationalizations for model decisions.
Our findings suggest that human-like reasoning strategies can effectively improve the coherence and reliability of PLM reasoning.
arXiv Detail & Related papers (2023-10-24T19:46:04Z) - Towards LogiGLUE: A Brief Survey and A Benchmark for Analyzing Logical Reasoning Capabilities of Language Models [56.34029644009297]
Large language models (LLMs) have demonstrated the ability to overcome various limitations of formal Knowledge Representation (KR) systems.
LLMs excel most in abductive reasoning, followed by deductive reasoning, while they are least effective at inductive reasoning.
We study single-task training, multi-task training, and "chain-of-thought" knowledge distillation fine-tuning technique to assess the performance of model.
arXiv Detail & Related papers (2023-10-02T01:00:50Z) - L2CEval: Evaluating Language-to-Code Generation Capabilities of Large
Language Models [102.00201523306986]
We present L2CEval, a systematic evaluation of the language-to-code generation capabilities of large language models (LLMs)
We analyze the factors that potentially affect their performance, such as model size, pretraining data, instruction tuning, and different prompting methods.
In addition to assessing model performance, we measure confidence calibration for the models and conduct human evaluations of the output programs.
arXiv Detail & Related papers (2023-09-29T17:57:00Z) - CRITIC: Large Language Models Can Self-Correct with Tool-Interactive
Critiquing [139.77117915309023]
CRITIC allows large language models to validate and amend their own outputs in a manner similar to human interaction with tools.
Comprehensive evaluations involving free-form question answering, mathematical program synthesis, and toxicity reduction demonstrate that CRITIC consistently enhances the performance of LLMs.
arXiv Detail & Related papers (2023-05-19T15:19:44Z) - Generated Knowledge Prompting for Commonsense Reasoning [53.88983683513114]
We propose generating knowledge statements directly from a language model with a generic prompt format.
This approach improves performance of both off-the-shelf and finetuned language models on four commonsense reasoning tasks.
Notably, we find that a model's predictions can improve when using its own generated knowledge.
arXiv Detail & Related papers (2021-10-15T21:58:03Z) - Data Augmentation for Spoken Language Understanding via Pretrained
Language Models [113.56329266325902]
Training of spoken language understanding (SLU) models often faces the problem of data scarcity.
We put forward a data augmentation method using pretrained language models to boost the variability and accuracy of generated utterances.
arXiv Detail & Related papers (2020-04-29T04:07:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.