AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework
- URL: http://arxiv.org/abs/2408.13986v1
- Date: Mon, 26 Aug 2024 02:36:55 GMT
- Title: AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework
- Authors: Jie Feng, Yuwei Du, Jie Zhao, Yong Li,
- Abstract summary: We introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide.
In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks.
Experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics.
- Score: 7.007450097312181
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Human mobility prediction plays a crucial role in various real-world applications. Although deep learning based models have shown promising results over the past decade, their reliance on extensive private mobility data for training and their inability to perform zero-shot predictions, have hindered further advancements. Recently, attempts have been made to apply large language models (LLMs) to mobility prediction task. However, their performance has been constrained by the absence of a systematic design of workflow. They directly generate the final output using LLMs, which limits the potential of LLMs to uncover complex mobility patterns and underestimates their extensive reserve of global geospatial knowledge. In this paper, we introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide. In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks, including spatial-temporal memory for individual mobility pattern mining, world knowledge generator for modeling the effects of urban structure and collective knowledge extractor for capturing the shared patterns among population. Finally, we combine the results of three modules and conduct a reasoning step to generate the final predictions. Extensive experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics and it shows robust predictions with various LLMs as base and also less geographical bias across cities. Codes and data can be found in https://github.com/tsinghua-fib-lab/AgentMove.
Related papers
- Multi-Transmotion: Pre-trained Model for Human Motion Prediction [68.87010221355223]
Multi-Transmotion is an innovative transformer-based model designed for cross-modality pre-training.
Our methodology demonstrates competitive performance across various datasets on several downstream tasks.
arXiv Detail & Related papers (2024-11-04T23:15:21Z) - FoMo: A Foundation Model for Mobile Traffic Forecasting with Diffusion Model [5.96737388771505]
We propose an innovative Foundation model for Mobile traffic forecasting (FoMo)
FoMo handles diverse forecasting tasks of short/long-term predictions and distribution generation across multiple cities to support network planning and optimization.
Extensive experiments on 9 real-world datasets demonstrate that FoMo outperforms current models concerning diverse forecasting tasks and zero/few-shot learning.
arXiv Detail & Related papers (2024-10-20T07:32:16Z) - Proactive Agent: Shifting LLM Agents from Reactive Responses to Active Assistance [95.03771007780976]
We tackle the challenge of developing proactive agents capable of anticipating and initiating tasks without explicit human instructions.
First, we collect real-world human activities to generate proactive task predictions.
These predictions are labeled by human annotators as either accepted or rejected.
The labeled data is used to train a reward model that simulates human judgment.
arXiv Detail & Related papers (2024-10-16T08:24:09Z) - DOME: Taming Diffusion Model into High-Fidelity Controllable Occupancy World Model [14.996395953240699]
DOME is a diffusion-based world model that predicts future occupancy frames based on past occupancy observations.
The ability of this world model to capture the evolution of the environment is crucial for planning in autonomous driving.
arXiv Detail & Related papers (2024-10-14T12:24:32Z) - OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - LIMP: Large Language Model Enhanced Intent-aware Mobility Prediction [5.7042182940772275]
We propose a novel LIMP (LLMs for Intent-ware Mobility Prediction) framework.
Specifically, LIMP introduces an "Analyze-Abstract-Infer" (A2I) agentic workflow to unleash LLMs commonsense reasoning power for mobility intention inference.
We evaluate LIMP on two real-world datasets, demonstrating improved accuracy in next-location prediction and effective intention inference.
arXiv Detail & Related papers (2024-08-23T04:28:56Z) - Agent-FLAN: Designing Data and Methods of Effective Agent Tuning for Large Language Models [56.00992369295851]
Open-sourced Large Language Models (LLMs) have achieved great success in various NLP tasks, however, they are still far inferior to API-based models when acting as agents.
This paper delivers three key observations: (1) the current agent training corpus is entangled with both formats following and agent reasoning, which significantly shifts from the distribution of its pre-training data; (2) LLMs exhibit different learning speeds on the capabilities required by agent tasks; and (3) current approaches have side-effects when improving agent abilities by introducing hallucinations.
We propose Agent-FLAN to effectively Fine-tune LANguage models for Agents.
arXiv Detail & Related papers (2024-03-19T16:26:10Z) - Where Would I Go Next? Large Language Models as Human Mobility
Predictors [21.100313868232995]
We introduce a novel method, LLM-Mob, which leverages the language understanding and reasoning capabilities of LLMs for analysing human mobility data.
Comprehensive evaluations of our method reveal that LLM-Mob excels in providing accurate and interpretable predictions.
arXiv Detail & Related papers (2023-08-29T10:24:23Z) - Context-aware multi-head self-attentional neural network model for next
location prediction [19.640761373993417]
We utilize a multi-head self-attentional (A) neural network that learns location patterns from historical location visits.
We demonstrate that proposed the model outperforms other state-of-the-art prediction models.
We believe that the proposed model is vital for context-aware mobility prediction.
arXiv Detail & Related papers (2022-12-04T23:40:14Z) - Motion Transformer with Global Intention Localization and Local Movement
Refinement [103.75625476231401]
Motion TRansformer (MTR) models motion prediction as the joint optimization of global intention localization and local movement refinement.
MTR achieves state-of-the-art performance on both the marginal and joint motion prediction challenges.
arXiv Detail & Related papers (2022-09-27T16:23:14Z) - Model-based Reinforcement Learning for Decentralized Multiagent
Rendezvous [66.6895109554163]
Underlying the human ability to align goals with other agents is their ability to predict the intentions of others and actively update their own plans.
We propose hierarchical predictive planning (HPP), a model-based reinforcement learning method for decentralized multiagent rendezvous.
arXiv Detail & Related papers (2020-03-15T19:49:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.