Large Language Models are Zero-Shot Next Location Predictors
- URL: http://arxiv.org/abs/2405.20962v3
- Date: Fri, 23 Aug 2024 09:24:22 GMT
- Title: Large Language Models are Zero-Shot Next Location Predictors
- Authors: Ciro Beneduce, Bruno Lepri, Massimiliano Luca,
- Abstract summary: Large Language Models (LLMs) have shown good generalization and reasoning capabilities.
LLMs can obtain accuracies up to 36.2%, a significant improvement of almost 640% when compared to other models specifically designed for human mobility.
- Score: 4.315451628809687
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Predicting the locations an individual will visit in the future is crucial for solving many societal issues like disease diffusion and reduction of pollution. However, next-location predictors require a significant amount of individual-level information that may be scarce or unavailable in some scenarios (e.g., cold-start). Large Language Models (LLMs) have shown good generalization and reasoning capabilities and are rich in geographical knowledge, allowing us to believe that these models can act as zero-shot next-location predictors. We tested more than 15 LLMs on three real-world mobility datasets and we found that LLMs can obtain accuracies up to 36.2%, a significant relative improvement of almost 640% when compared to other models specifically designed for human mobility. We also test for data contamination and explored the possibility of using LLMs as text-based explainers for next-location prediction, showing that, regardless of the model size, LLMs can explain their decision.
Related papers
- A Foundational individual Mobility Prediction Model based on Open-Source Large Language Models [0.0]
Large Language Models (LLMs) are widely applied to domain-specific tasks.
This paper proposes a unified fine-tuning framework to train a foundational open source LLM-based mobility prediction model.
arXiv Detail & Related papers (2025-03-19T15:08:37Z) - Using Large Language Models for Expert Prior Elicitation in Predictive Modelling [53.54623137152208]
This study proposes using large language models (LLMs) to elicit expert prior distributions for predictive models.
We compare LLM-elicited and uninformative priors, evaluate whether LLMs truthfully generate parameter distributions, and propose a model selection strategy for in-context learning and prior elicitation.
Our findings show that LLM-elicited prior parameter distributions significantly reduce predictive error compared to uninformative priors in low-data settings.
arXiv Detail & Related papers (2024-11-26T10:13:39Z) - Predicting Emergent Capabilities by Finetuning [98.9684114851891]
We find that finetuning language models can shift the point in scaling at which emergence occurs towards less capable models.
We validate this approach using four standard NLP benchmarks.
We find that, in some cases, we can accurately predict whether models trained with up to 4x more compute have emerged.
arXiv Detail & Related papers (2024-11-25T01:48:09Z) - Empirical Insights on Fine-Tuning Large Language Models for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - AgentMove: Predicting Human Mobility Anywhere Using Large Language Model based Agentic Framework [7.007450097312181]
We introduce AgentMove, a systematic agentic prediction framework to achieve generalized mobility prediction for any cities worldwide.
In AgentMove, we first decompose the mobility prediction task into three sub-tasks and then design corresponding modules to complete these subtasks.
Experiments on mobility data from two sources in 12 cities demonstrate that AgentMove outperforms the best baseline more than 8% in various metrics.
arXiv Detail & Related papers (2024-08-26T02:36:55Z) - Deep Bayesian Active Learning for Preference Modeling in Large Language Models [84.817400962262]
We propose the Bayesian Active Learner for Preference Modeling (BAL-PM) for Preference Modeling.
BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
Our experiments demonstrate that BAL-PM requires 33% to 68% fewer preference labels in two popular human preference datasets and exceeds previous Bayesian acquisition policies.
arXiv Detail & Related papers (2024-06-14T13:32:43Z) - Bayesian Statistical Modeling with Predictors from LLMs [5.5711773076846365]
State of the art large language models (LLMs) have shown impressive performance on a variety of benchmark tasks.
This raises questions about the human-likeness of LLM-derived information.
arXiv Detail & Related papers (2024-06-13T11:33:30Z) - Large Language Models Must Be Taught to Know What They Don't Know [97.90008709512921]
We show that fine-tuning on a small dataset of correct and incorrect answers can create an uncertainty estimate with good generalization and small computational overhead.
We also investigate the mechanisms that enable reliable uncertainty estimation, finding that many models can be used as general-purpose uncertainty estimators.
arXiv Detail & Related papers (2024-06-12T16:41:31Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
Low-rank approximation techniques have become the de facto standard for fine-tuning Large Language Models.
This paper investigates the effectiveness of these methods in capturing the shift of fine-tuning datasets from the initial pre-trained data distribution.
We show that low-rank fine-tuning inadvertently preserves undesirable biases and toxic behaviors.
arXiv Detail & Related papers (2024-05-28T20:43:53Z) - Distortions in Judged Spatial Relations in Large Language Models [45.875801135769585]
GPT-4 exhibited superior performance with 55 percent accuracy, followed by GPT-3.5 at 47 percent, and Llama-2 at 45 percent.
The models identified the nearest cardinal direction in most cases, reflecting their associative learning mechanism.
arXiv Detail & Related papers (2024-01-08T20:08:04Z) - Where Would I Go Next? Large Language Models as Human Mobility
Predictors [21.100313868232995]
We introduce a novel method, LLM-Mob, which leverages the language understanding and reasoning capabilities of LLMs for analysing human mobility data.
Comprehensive evaluations of our method reveal that LLM-Mob excels in providing accurate and interpretable predictions.
arXiv Detail & Related papers (2023-08-29T10:24:23Z) - On the Risk of Misinformation Pollution with Large Language Models [127.1107824751703]
We investigate the potential misuse of modern Large Language Models (LLMs) for generating credible-sounding misinformation.
Our study reveals that LLMs can act as effective misinformation generators, leading to a significant degradation in the performance of Open-Domain Question Answering (ODQA) systems.
arXiv Detail & Related papers (2023-05-23T04:10:26Z) - CancerGPT: Few-shot Drug Pair Synergy Prediction using Large Pre-trained
Language Models [3.682742580232362]
Large pre-trained language models (LLMs) have been shown to have significant potential in few-shot learning across various fields.
Our research is the first to tackle drug pair synergy prediction in rare tissues with limited data.
arXiv Detail & Related papers (2023-04-18T02:49:53Z) - Holistic Evaluation of Language Models [183.94891340168175]
Language models (LMs) are becoming the foundation for almost all major language technologies, but their capabilities, limitations, and risks are not well understood.
We present Holistic Evaluation of Language Models (HELM) to improve the transparency of language models.
arXiv Detail & Related papers (2022-11-16T18:51:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.