Chiral cat state generation via the Sagnac-Fizeau effect
- URL: http://arxiv.org/abs/2408.14029v1
- Date: Mon, 26 Aug 2024 05:39:58 GMT
- Title: Chiral cat state generation via the Sagnac-Fizeau effect
- Authors: Yu-Hong Liu, Xian-Li Yin, Hui Jing, Le-Man Kuang, Jie-Qiao Liao,
- Abstract summary: We propose a proposal for generating chiral cat states in a spinning resonator supporting both the clockwise (CW) and counterclockwise (CCW) traveling modes.
By choosing proper system parameters, we achieve the separate generation of the Schr"odinger cat states and coherent states in the two traveling modes.
Our work will provide some insights into the development of chiral optical devices and nonreciprocal photonics physics.
- Score: 2.8824133338925932
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Schr\"{o}dinger cat states are a kind of significant quantum resource in quantum physics and quantum information science. Here we propose a proposal for generating chiral cat states in a spinning resonator supporting both the clockwise (CW) and counterclockwise (CCW) traveling modes, which are dispersively coupled to a two-level atom. The physical mechanism for the chiral cat-state generation is based on the Sagnac-Fizeau effect. Concretely, when the resonator is rotating, the CW and CCW modes have different frequency detuning with respect to the atomic transition frequency, and hence the atomic-state-dependent rotating angular velocities for the CW and CCW modes in phase space are different. This mode-dependent evolution leads to the chirality in the state generation. By choosing proper system parameters, we achieve the separate generation of the Schr\"{o}dinger cat states and coherent states in the two traveling modes. We also investigate quantum coherence properties of the generated states by examining their Wigner functions. In addition, the influence of the system dissipations on the state generation in the open-system case is investigated. Our work will provide some insights into the development of chiral optical devices and nonreciprocal photonics physics.
Related papers
- A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Hybrid Rotational Cavity Optomechanics Using Atomic Superfluid in a Ring [0.6437261616511726]
We introduce a hybrid optomechanical system containing an annularly trapped Bose-Einstein condensate (BEC) inside an optical cavity driven by Lauguerre-Gaussian modes.
We find that the trapped BEC's rotation reduces quantum fluctuations at the mirror's resonance frequency.
arXiv Detail & Related papers (2024-07-02T07:06:06Z) - Dynamics of spin-momentum entanglement from superradiant phase transitions [0.0]
We consider an experimentally feasible many-body cavity QED model describing a four-level system.
The resulting model comprises a pair of Dicke Hamiltonians constructed from pseudo-spin operators.
We discuss the role of cavity losses in steering the system's dynamics into such entangled states.
arXiv Detail & Related papers (2023-12-06T19:00:01Z) - Creation of Two-Mode Squeezed States in Atomic Mechanical Oscillators [6.445506003176312]
Two-mode squeezed states are entangled states with bipartite quantum correlations in continuous-variable systems.
We experimentally demonstrate two-mode squeezed states by employing atoms in a two-dimensional optical lattice as quantum registers.
arXiv Detail & Related papers (2023-11-09T07:13:07Z) - The squeezed Kerr oscillator: spectral kissing and phase-flip robustness [0.0]
We realize an elementary quantum optics model, the squeezed Kerr oscillator.
For the first time, we resolve up to the tenth excited state.
Considering the Kerr-cat qubit encoded in this ground state manifold, we achieve for the first time quantum nondemolition readout fidelities greater than 99%.
arXiv Detail & Related papers (2022-09-08T17:21:27Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Observation of Time-Crystalline Eigenstate Order on a Quantum Processor [80.17270167652622]
Quantum-body systems display rich phase structure in their low-temperature equilibrium states.
We experimentally observe an eigenstate-ordered DTC on superconducting qubits.
Results establish a scalable approach to study non-equilibrium phases of matter on current quantum processors.
arXiv Detail & Related papers (2021-07-28T18:00:03Z) - Qubit-photon bound states in topological waveguides with long-range
hoppings [62.997667081978825]
Quantum emitters interacting with photonic band-gap materials lead to the appearance of qubit-photon bound states.
We study the features of the qubit-photon bound states when the emitters couple to the bulk modes in the different phases.
We consider the coupling of emitters to the edge modes appearing in the different topological phases.
arXiv Detail & Related papers (2021-05-26T10:57:21Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.