PAGE: Parametric Generative Explainer for Graph Neural Network
- URL: http://arxiv.org/abs/2408.14042v2
- Date: Fri, 6 Sep 2024 08:13:09 GMT
- Title: PAGE: Parametric Generative Explainer for Graph Neural Network
- Authors: Yang Qiu, Wei Liu, Jun Wang, Ruixuan Li,
- Abstract summary: PAGE is capable of providing faithful explanations for any graph neural network without necessitating prior knowledge or internal details.
We introduce an additional discriminator to capture the causality between latent causal features and the model's output.
Compared to existing methods, PAGE operates at the sample scale rather than nodes or edges.
- Score: 16.350208494261913
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This article introduces PAGE, a parameterized generative interpretive framework. PAGE is capable of providing faithful explanations for any graph neural network without necessitating prior knowledge or internal details. Specifically, we train the auto-encoder to generate explanatory substructures by designing appropriate training strategy. Due to the dimensionality reduction of features in the latent space of the auto-encoder, it becomes easier to extract causal features leading to the model's output, which can be easily employed to generate explanations. To accomplish this, we introduce an additional discriminator to capture the causality between latent causal features and the model's output. By designing appropriate optimization objectives, the well-trained discriminator can be employed to constrain the encoder in generating enhanced causal features. Finally, these features are mapped to substructures of the input graph through the decoder to serve as explanations. Compared to existing methods, PAGE operates at the sample scale rather than nodes or edges, eliminating the need for perturbation or encoding processes as seen in previous methods. Experimental results on both artificially synthesized and real-world datasets demonstrate that our approach not only exhibits the highest faithfulness and accuracy but also significantly outperforms baseline models in terms of efficiency.
Related papers
- The Persian Rug: solving toy models of superposition using large-scale symmetries [0.0]
We present a complete mechanistic description of the algorithm learned by a minimal non-linear sparse data autoencoder in the limit of large input dimension.
Our work contributes to neural network interpretability by introducing techniques for understanding the structure of autoencoders.
arXiv Detail & Related papers (2024-10-15T22:52:45Z) - Localized Gaussians as Self-Attention Weights for Point Clouds Correspondence [92.07601770031236]
We investigate semantically meaningful patterns in the attention heads of an encoder-only Transformer architecture.
We find that fixing the attention weights not only accelerates the training process but also enhances the stability of the optimization.
arXiv Detail & Related papers (2024-09-20T07:41:47Z) - Automatic Input Feature Relevance via Spectral Neural Networks [0.9236074230806581]
We propose a novel method to estimate the relative importance of the input components for a Deep Neural Network.
This is achieved by leveraging on a spectral re-parametrization of the optimization process.
The technique is successfully challenged against both synthetic and real data.
arXiv Detail & Related papers (2024-06-03T10:39:12Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Tram: A Token-level Retrieval-augmented Mechanism for Source Code Summarization [76.57699934689468]
We propose a fine-grained Token-level retrieval-augmented mechanism (Tram) on the decoder side to enhance the performance of neural models.
To overcome the challenge of token-level retrieval in capturing contextual code semantics, we also propose integrating code semantics into individual summary tokens.
arXiv Detail & Related papers (2023-05-18T16:02:04Z) - Semi-supervised counterfactual explanations [3.6810543937967912]
We address the challenge of generating counterfactual explanations that lie in the same data distribution as that of the training data.
This requirement has been addressed through the incorporation of auto-encoder reconstruction loss in the counterfactual search process.
We show further improvement in the interpretability of counterfactual explanations when the auto-encoder is trained in a semi-supervised fashion with class tagged input data.
arXiv Detail & Related papers (2023-03-22T15:17:16Z) - Fundamental Limits of Two-layer Autoencoders, and Achieving Them with
Gradient Methods [91.54785981649228]
This paper focuses on non-linear two-layer autoencoders trained in the challenging proportional regime.
Our results characterize the minimizers of the population risk, and show that such minimizers are achieved by gradient methods.
For the special case of a sign activation function, our analysis establishes the fundamental limits for the lossy compression of Gaussian sources via (shallow) autoencoders.
arXiv Detail & Related papers (2022-12-27T12:37:34Z) - Graph Kernel Neural Networks [53.91024360329517]
We propose to use graph kernels, i.e. kernel functions that compute an inner product on graphs, to extend the standard convolution operator to the graph domain.
This allows us to define an entirely structural model that does not require computing the embedding of the input graph.
Our architecture allows to plug-in any type of graph kernels and has the added benefit of providing some interpretability.
arXiv Detail & Related papers (2021-12-14T14:48:08Z) - A Meta-Learning Approach for Training Explainable Graph Neural Networks [10.11960004698409]
We propose a meta-learning framework for improving the level of explainability of a GNN directly at training time.
Our framework jointly trains a model to solve the original task, e.g., node classification, and to provide easily processable outputs for downstream algorithms.
Our model-agnostic approach can improve the explanations produced for different GNN architectures and use any instance-based explainer to drive this process.
arXiv Detail & Related papers (2021-09-20T11:09:10Z) - Generative Counterfactuals for Neural Networks via Attribute-Informed
Perturbation [51.29486247405601]
We design a framework to generate counterfactuals for raw data instances with the proposed Attribute-Informed Perturbation (AIP)
By utilizing generative models conditioned with different attributes, counterfactuals with desired labels can be obtained effectively and efficiently.
Experimental results on real-world texts and images demonstrate the effectiveness, sample quality as well as efficiency of our designed framework.
arXiv Detail & Related papers (2021-01-18T08:37:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.