Automatic Input Feature Relevance via Spectral Neural Networks
- URL: http://arxiv.org/abs/2406.01183v1
- Date: Mon, 3 Jun 2024 10:39:12 GMT
- Title: Automatic Input Feature Relevance via Spectral Neural Networks
- Authors: Lorenzo Chicchi, Lorenzo Buffoni, Diego Febbe, Lorenzo Giambagli, Raffaele Marino, Duccio Fanelli,
- Abstract summary: We propose a novel method to estimate the relative importance of the input components for a Deep Neural Network.
This is achieved by leveraging on a spectral re-parametrization of the optimization process.
The technique is successfully challenged against both synthetic and real data.
- Score: 0.9236074230806581
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Working with high-dimensional data is a common practice, in the field of machine learning. Identifying relevant input features is thus crucial, so as to obtain compact dataset more prone for effective numerical handling. Further, by isolating pivotal elements that form the basis of decision making, one can contribute to elaborate on - ex post - models' interpretability, so far rather elusive. Here, we propose a novel method to estimate the relative importance of the input components for a Deep Neural Network. This is achieved by leveraging on a spectral re-parametrization of the optimization process. Eigenvalues associated to input nodes provide in fact a robust proxy to gauge the relevance of the supplied entry features. Unlike existing techniques, the spectral features ranking is carried out automatically, as a byproduct of the network training. The technique is successfully challenged against both synthetic and real data.
Related papers
- Iterative Feature Boosting for Explainable Speech Emotion Recognition [17.568724398229232]
We present a new supervised SER method based on an efficient feature engineering approach.
We pay particular attention to the explainability of results to evaluate feature relevance and refine feature sets.
The proposed method outperforms human-level performance (HLP) and state-of-the-art machine learning methods in emotion recognition on the TESS dataset.
arXiv Detail & Related papers (2024-05-30T15:44:27Z) - Neural Network Pruning by Gradient Descent [7.427858344638741]
We introduce a novel and straightforward neural network pruning framework that incorporates the Gumbel-Softmax technique.
We demonstrate its exceptional compression capability, maintaining high accuracy on the MNIST dataset with only 0.15% of the original network parameters.
We believe our method opens a promising new avenue for deep learning pruning and the creation of interpretable machine learning systems.
arXiv Detail & Related papers (2023-11-21T11:12:03Z) - Deep Feature Learning for Wireless Spectrum Data [0.5809784853115825]
We propose an approach to learning feature representations for wireless transmission clustering in a completely unsupervised manner.
We show that the automatic representation learning is able to extract fine-grained clusters containing the shapes of the wireless transmission bursts.
arXiv Detail & Related papers (2023-08-07T12:27:19Z) - Incrementally-Computable Neural Networks: Efficient Inference for
Dynamic Inputs [75.40636935415601]
Deep learning often faces the challenge of efficiently processing dynamic inputs, such as sensor data or user inputs.
We take an incremental computing approach, looking to reuse calculations as the inputs change.
We apply this approach to the transformers architecture, creating an efficient incremental inference algorithm with complexity proportional to the fraction of modified inputs.
arXiv Detail & Related papers (2023-07-27T16:30:27Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - MARS: Meta-Learning as Score Matching in the Function Space [79.73213540203389]
We present a novel approach to extracting inductive biases from a set of related datasets.
We use functional Bayesian neural network inference, which views the prior as a process and performs inference in the function space.
Our approach can seamlessly acquire and represent complex prior knowledge by metalearning the score function of the data-generating process.
arXiv Detail & Related papers (2022-10-24T15:14:26Z) - Deep Equilibrium Assisted Block Sparse Coding of Inter-dependent
Signals: Application to Hyperspectral Imaging [71.57324258813675]
A dataset of inter-dependent signals is defined as a matrix whose columns demonstrate strong dependencies.
A neural network is employed to act as structure prior and reveal the underlying signal interdependencies.
Deep unrolling and Deep equilibrium based algorithms are developed, forming highly interpretable and concise deep-learning-based architectures.
arXiv Detail & Related papers (2022-03-29T21:00:39Z) - Simultaneous Learning of the Inputs and Parameters in Neural
Collaborative Filtering [5.076419064097734]
We show that the non-zero elements of the inputs are learnable parameters that determine the weights in combining the user/item embeddings.
We propose to learn the value of the non-zero elements of the inputs jointly with the neural network parameters.
arXiv Detail & Related papers (2022-03-14T19:47:38Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - ITSA: An Information-Theoretic Approach to Automatic Shortcut Avoidance
and Domain Generalization in Stereo Matching Networks [14.306250516592305]
We show that learning of feature representations in stereo matching networks is heavily influenced by synthetic data artefacts.
We propose an Information-Theoretic Shortcut Avoidance(ITSA) approach to automatically restrict shortcut-related information from being encoded into the feature representations.
We show that using this method, state-of-the-art stereo matching networks that are trained purely on synthetic data can effectively generalize to challenging and previously unseen real data scenarios.
arXiv Detail & Related papers (2022-01-06T22:03:50Z) - Fine-Grained Neural Network Explanation by Identifying Input Features
with Predictive Information [53.28701922632817]
We propose a method to identify features with predictive information in the input domain.
The core idea of our method is leveraging a bottleneck on the input that only lets input features associated with predictive latent features pass through.
arXiv Detail & Related papers (2021-10-04T14:13:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.