論文の概要: Estimating Causal Effects from Learned Causal Networks
- arxiv url: http://arxiv.org/abs/2408.14101v2
- Date: Tue, 27 Aug 2024 09:54:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 12:32:32.973484
- Title: Estimating Causal Effects from Learned Causal Networks
- Title(参考訳): 学習因果ネットワークによる因果効果の推定
- Authors: Anna Raichev, Alexander Ihler, Jin Tian, Rina Dechter,
- Abstract要約: 本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
- 参考スコア(独自算出の注目度): 56.14597641617531
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The standard approach to answering an identifiable causal-effect query (e.g., $P(Y|do(X)$) when given a causal diagram and observational data is to first generate an estimand, or probabilistic expression over the observable variables, which is then evaluated using the observational data. In this paper, we propose an alternative paradigm for answering causal-effect queries over discrete observable variables. We propose to instead learn the causal Bayesian network and its confounding latent variables directly from the observational data. Then, efficient probabilistic graphical model (PGM) algorithms can be applied to the learned model to answer queries. Perhaps surprisingly, we show that this \emph{model completion} learning approach can be more effective than estimand approaches, particularly for larger models in which the estimand expressions become computationally difficult. We illustrate our method's potential using a benchmark collection of Bayesian networks and synthetically generated causal models.
- Abstract(参考訳): 因果ダイアグラムと観測データが与えられた場合、同定可能な因果効果クエリ(例えば$P(Y|do(X)$)に応答する標準的なアプローチは、まず観測可能な変数に対する推定、あるいは確率的表現を生成し、観測データを用いて評価する。
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習することを提案する。
次に、学習したモデルに効率的な確率的グラフィカルモデル(PGM)アルゴリズムを適用し、クエリに応答する。
おそらく、この「emph{model completion}」学習アプローチは、特に推定式が計算的に困難になる大規模モデルにおいて、推定手法よりも効果的であることを示す。
ベイジアンネットワークのベンチマークコレクションと合成因果モデルを用いて,本手法の可能性について述べる。
関連論文リスト
- Graph-based Complexity for Causal Effect by Empirical Plug-in [56.14597641617531]
本稿では、因果効果クエリに対する経験的プラグイン推定の計算複雑性に焦点を当てる。
計算は、推定値のハイパーグラフに依存するため、データサイズにおいて、潜在的に線形な時間で効率的に行うことができることを示す。
論文 参考訳(メタデータ) (2024-11-15T07:42:01Z) - Conditional Generative Models are Sufficient to Sample from Any Causal Effect Estimand [9.460857822923842]
観測データからの因果推論は、信頼できる機械学習における多くの応用において重要な役割を果たす。
任意の因果グラフを与えられた任意の介入分布からサンプリングする方法を示す。
またテキストと画像変数を含むMIMIC-CXRデータセットから高次元干渉サンプルを生成する。
論文 参考訳(メタデータ) (2024-02-12T05:48:31Z) - Sample, estimate, aggregate: A recipe for causal discovery foundation models [28.116832159265964]
我々は、古典因果探索アルゴリズムの出力からより大きな因果グラフを予測することを学ぶ教師付きモデルを訓練する。
我々のアプローチは、古典的手法の出力における典型的なエラーがデータセット間で比較できるという観察によって実現されている。
実データおよび合成データに関する実験では、このモデルが不特定性や分布シフトに直面して高い精度を維持することを示した。
論文 参考訳(メタデータ) (2024-02-02T21:57:58Z) - Likelihood-Based Methods Improve Parameter Estimation in Opinion
Dynamics Models [6.138671548064356]
エージェント・ベース・モデル(ABM)におけるパラメータ推定の最大解法は、典型的なシミュレーション・ベース・アプローチよりも優れていることを示す。
対照的に、確率に基づくアプローチは、統計的に原理化された方法で未知のパラメータを観測データに接続する確率関数を導出する。
実験の結果,最大推定値の精度は最大4倍に向上し,計算時間を最大200倍に短縮できることがわかった。
論文 参考訳(メタデータ) (2023-10-04T12:29:37Z) - Diffusion Causal Models for Counterfactual Estimation [18.438307666925425]
本稿では,観測画像データから因果構造を推定する作業について考察する。
Diff-SCMは,近年の発電エネルギーモデルの発展を基盤とした構造因果モデルである。
Diff-SCMはMNISTデータに基づくベースラインよりも現実的で最小限のデファクトアルを生成しており、ImageNetデータにも適用可能である。
論文 参考訳(メタデータ) (2022-02-21T12:23:01Z) - Causal Collaborative Filtering [50.22155187512759]
Causal Collaborative Filteringは、協調フィルタリングとレコメンデーションにおける因果関係をモデル化するためのフレームワークである。
従来のCFアルゴリズムの多くは、単純化された因果グラフの下で、実際にCCFの特殊なケースであることを示す。
そこで我々は,$do$-operationに対する条件付き介入手法を提案する。
論文 参考訳(メタデータ) (2021-02-03T04:16:11Z) - Explaining and Improving Model Behavior with k Nearest Neighbor
Representations [107.24850861390196]
モデルの予測に責任のあるトレーニング例を特定するために, k 近傍表現を提案する。
我々は,kNN表現が学習した素因関係を明らかにするのに有効であることを示す。
以上の結果から,kNN手法により,直交モデルが逆入力に対してより堅牢であることが示唆された。
論文 参考訳(メタデータ) (2020-10-18T16:55:25Z) - Goal-directed Generation of Discrete Structures with Conditional
Generative Models [85.51463588099556]
本稿では,強化学習目標を直接最適化し,期待される報酬を最大化するための新しいアプローチを提案する。
提案手法は、ユーザ定義プロパティを持つ分子の生成と、所定の目標値を評価する短いピソン表現の同定という2つのタスクで検証する。
論文 参考訳(メタデータ) (2020-10-05T20:03:13Z) - Structural Causal Models Are (Solvable by) Credal Networks [70.45873402967297]
因果推論は、干潟網の更新のための標準的なアルゴリズムによって得ることができる。
この貢献は, 干潟ネットワークによる構造因果モデルを表現するための体系的なアプローチと見なされるべきである。
実験により, 実規模問題における因果推論には, クレーダルネットワークの近似アルゴリズムがすぐに利用できることがわかった。
論文 参考訳(メタデータ) (2020-08-02T11:19:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。