Neighborhood and Global Perturbations Supported SAM in Federated Learning: From Local Tweaks To Global Awareness
- URL: http://arxiv.org/abs/2408.14144v2
- Date: Thu, 29 Aug 2024 08:27:26 GMT
- Title: Neighborhood and Global Perturbations Supported SAM in Federated Learning: From Local Tweaks To Global Awareness
- Authors: Boyuan Li, Zihao Peng, Yafei Li, Mingliang Xu, Shengbo Chen, Baofeng Ji, Cong Shen,
- Abstract summary: Federated Learning (FL) can be coordinated under the orchestration of a central server to build a privacy-preserving model.
We propose a novel FL algorithm, FedTOGA, designed to consider generalization objectives while maintaining minimal uplink communication overhead.
- Score: 29.679323144520037
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) can be coordinated under the orchestration of a central server to collaboratively build a privacy-preserving model without the need for data exchange. However, participant data heterogeneity leads to local optima divergence, subsequently affecting convergence outcomes. Recent research has focused on global sharpness-aware minimization (SAM) and dynamic regularization techniques to enhance consistency between global and local generalization and optimization objectives. Nonetheless, the estimation of global SAM introduces additional computational and memory overhead, while dynamic regularization suffers from bias in the local and global dual variables due to training isolation. In this paper, we propose a novel FL algorithm, FedTOGA, designed to consider optimization and generalization objectives while maintaining minimal uplink communication overhead. By linking local perturbations to global updates, global generalization consistency is improved. Additionally, global updates are used to correct local dynamic regularizers, reducing dual variables bias and enhancing optimization consistency. Global updates are passively received by clients, reducing overhead. We also propose neighborhood perturbation to approximate local perturbation, analyzing its strengths and limitations. Theoretical analysis shows FedTOGA achieves faster convergence $O(1/T)$ under non-convex functions. Empirical studies demonstrate that FedTOGA outperforms state-of-the-art algorithms, with a 1\% accuracy increase and 30\% faster convergence, achieving state-of-the-art.
Related papers
- Locally Estimated Global Perturbations are Better than Local Perturbations for Federated Sharpness-aware Minimization [81.32266996009575]
In federated learning (FL), the multi-step update and data heterogeneity among clients often lead to a loss landscape with sharper minima.
We propose FedLESAM, a novel algorithm that locally estimates the direction of global perturbation on client side.
arXiv Detail & Related papers (2024-05-29T08:46:21Z) - Stragglers-Aware Low-Latency Synchronous Federated Learning via Layer-Wise Model Updates [71.81037644563217]
Synchronous federated learning (FL) is a popular paradigm for collaborative edge learning.
As some of the devices may have limited computational resources and varying availability, FL latency is highly sensitive to stragglers.
We propose straggler-aware layer-wise federated learning (SALF) that leverages the optimization procedure of NNs via backpropagation to update the global model in a layer-wise fashion.
arXiv Detail & Related papers (2024-03-27T09:14:36Z) - Federated Learning with Manifold Regularization and Normalized Update
Reaggregation [22.885899072143676]
Federated Learning (FL) is a collaborative machine learning framework where multiple clients train the global model without sharing their own datasets.
In FL, the model inconsistency caused by the local data across clients results in the near-orthogonality of client updates.
We propose FedMRUR by adopting the emerging manifold model fusion scheme and a new global update to alleviate the negative impacts.
arXiv Detail & Related papers (2023-11-10T08:14:27Z) - Rethinking Client Drift in Federated Learning: A Logit Perspective [125.35844582366441]
Federated Learning (FL) enables multiple clients to collaboratively learn in a distributed way, allowing for privacy protection.
We find that the difference in logits between the local and global models increases as the model is continuously updated.
We propose a new algorithm, named FedCSD, a Class prototype Similarity Distillation in a federated framework to align the local and global models.
arXiv Detail & Related papers (2023-08-20T04:41:01Z) - Dynamic Regularized Sharpness Aware Minimization in Federated Learning: Approaching Global Consistency and Smooth Landscape [59.841889495864386]
In federated learning (FL), a cluster of local clients are chaired under the coordination of a global server.
Clients are prone to overfit into their own optima, which extremely deviates from the global objective.
ttfamily FedSMOO adopts a dynamic regularizer to guarantee the local optima towards the global objective.
Our theoretical analysis indicates that ttfamily FedSMOO achieves fast $mathcalO (1/T)$ convergence rate with low bound generalization.
arXiv Detail & Related papers (2023-05-19T10:47:44Z) - FedSpeed: Larger Local Interval, Less Communication Round, and Higher
Generalization Accuracy [84.45004766136663]
Federated learning is an emerging distributed machine learning framework.
It suffers from the non-vanishing biases introduced by the local inconsistent optimal and the rugged client-drifts by the local over-fitting.
We propose a novel and practical method, FedSpeed, to alleviate the negative impacts posed by these problems.
arXiv Detail & Related papers (2023-02-21T03:55:29Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Generalized Federated Learning via Sharpness Aware Minimization [22.294290071999736]
We propose a general, effective algorithm, textttFedSAM, based on Sharpness Aware Minimization (SAM) local, and develop a momentum FL algorithm to bridge local and global models.
Empirically, our proposed algorithms substantially outperform existing FL studies and significantly decrease the learning deviation.
arXiv Detail & Related papers (2022-06-06T13:54:41Z) - Revisiting Communication-Efficient Federated Learning with Balanced
Global and Local Updates [14.851898446967672]
We investigate and analyze the optimal trade-off between the number of local trainings and that of global aggregations.
Our proposed scheme can achieve a better performance in terms of the prediction accuracy, and converge much faster than the baseline schemes.
arXiv Detail & Related papers (2022-05-03T13:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.