Application of Disentanglement to Map Registration Problem
- URL: http://arxiv.org/abs/2408.14152v1
- Date: Mon, 26 Aug 2024 09:55:32 GMT
- Title: Application of Disentanglement to Map Registration Problem
- Authors: Hae Jin Song, Patrycja Krawczuk, Po-Hsuan Huang,
- Abstract summary: It is essential to first align different "styles" of geospatial data to its matching images that point to the same location on the surface of the Earth.
We propose a combination of $beta$-VAE-like architecture and adversarial training to achieve both the disentanglement of the geographic information and artistic styles and generation of new map tiles.
- Score: 0.3277163122167434
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geospatial data come from various sources, such as satellites, aircraft, and LiDAR. The variability of the source is not limited to the types of data acquisition techniques, as we have maps from different time periods. To incorporate these data for a coherent analysis, it is essential to first align different "styles" of geospatial data to its matching images that point to the same location on the surface of the Earth. In this paper, we approach the image registration as a two-step process of (1) extracting geospatial contents invariant to visual (and any other non-content-related) information, and (2) matching the data based on such (purely) geospatial contents. We hypothesize that a combination of $\beta$-VAE-like architecture [2] and adversarial training will achieve both the disentanglement of the geographic information and artistic styles and generation of new map tiles by composing the encoded geographic information with any artistic style.
Related papers
- AddressCLIP: Empowering Vision-Language Models for City-wide Image Address Localization [57.34659640776723]
We propose an end-to-end framework named AddressCLIP to solve the problem with more semantics.
We have built three datasets from Pittsburgh and San Francisco on different scales specifically for the IAL problem.
arXiv Detail & Related papers (2024-07-11T03:18:53Z) - Classification for everyone : Building geography agnostic models for fairer recognition [0.9558392439655016]
We quantitatively present this bias in two datasets - The Dollar Street dataset and ImageNet.
We then present different methods which can be employed to reduce this bias.
arXiv Detail & Related papers (2023-12-05T18:41:03Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - Geo-Tiles for Semantic Segmentation of Earth Observation Imagery [7.49377967268953]
Existing methods and benchmark datasets rely on pixel-based tiling schemes or on geo-tiling schemes employed by web mapping applications.
We propose a new segmentation pipeline for earth observation imagery relying on a tiling scheme that creates geo-tiles based on heterogeneous data.
This approach exhibits several beneficial properties compared to pixel-based or common web mapping approaches.
We demonstrate how the proposed tiling system allows to improve the results of current state-of-the-art semantic segmentation models.
arXiv Detail & Related papers (2023-06-01T15:46:04Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Where We Are and What We're Looking At: Query Based Worldwide Image
Geo-localization Using Hierarchies and Scenes [53.53712888703834]
We introduce an end-to-end transformer-based architecture that exploits the relationship between different geographic levels.
We achieve state of the art street level accuracy on 4 standard geo-localization datasets.
arXiv Detail & Related papers (2023-03-07T21:47:58Z) - Cross-view Geo-localization via Learning Disentangled Geometric Layout
Correspondence [11.823147814005411]
Cross-view geo-localization aims to estimate the location of a query ground image by matching it to a reference geo-tagged aerial images database.
Recent works achieve outstanding progress on cross-view geo-localization benchmarks.
However, existing methods still suffer from poor performance on the cross-area benchmarks.
arXiv Detail & Related papers (2022-12-08T04:54:01Z) - Activation Regression for Continuous Domain Generalization with
Applications to Crop Classification [48.795866501365694]
Geographic variance in satellite imagery impacts the ability of machine learning models to generalise to new regions.
We model geographic generalisation in medium resolution Landsat-8 satellite imagery as a continuous domain adaptation problem.
We develop a dataset spatially distributed across the entire continental United States.
arXiv Detail & Related papers (2022-04-14T15:41:39Z) - PetroGAN: A novel GAN-based approach to generate realistic, label-free
petrographic datasets [0.0]
We develop a novel deep learning framework based on generative adversarial networks (GANs) to create the first realistic synthetic petrographic dataset.
The training dataset consists of 10070 images of rock thin sections both in plane- and cross-polarized light.
The algorithm trained for 264 GPU hours and reached a state-of-the-art Fr'echet Inception Distance (FID) score of 12.49 for petrographic images.
arXiv Detail & Related papers (2022-04-07T01:55:53Z) - Accurate 3-DoF Camera Geo-Localization via Ground-to-Satellite Image
Matching [102.39635336450262]
We address the problem of ground-to-satellite image geo-localization by matching a query image captured at the ground level against a large-scale database with geotagged satellite images.
Our new method is able to achieve the fine-grained location of a query image, up to pixel size precision of the satellite image.
arXiv Detail & Related papers (2022-03-26T20:10:38Z) - Narrative Cartography with Knowledge Graphs [10.715484138543069]
We propose the idea of narrative cartography with knowledge graphs (KGs)
To tackle the data acquisition & integration challenge, we develop a set of KG-based GeoEnrichment toolboxes.
With the help of this tool, the retrieved data from KGs are directly materialized in a GIS format.
arXiv Detail & Related papers (2021-12-02T04:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.