論文の概要: Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery
- arxiv url: http://arxiv.org/abs/2408.14190v1
- Date: Mon, 26 Aug 2024 11:32:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:13:24.756137
- Title: Harnessing the Digital Revolution: A Comprehensive Review of mHealth Applications for Remote Monitoring in Transforming Healthcare Delivery
- Title(参考訳): デジタル革命のハーネス:医療変革における遠隔モニタリングのためのmHealthアプリケーションの概要
- Authors: Avnish Singh Jat, Tor-Morten Grønli,
- Abstract要約: このレビューでは、遠隔医療プラットフォーム、慢性疾患管理用のモバイルアプリ、ウェアラブルデバイスなど、リモート監視に使用されるさまざまなタイプのmHealthアプリケーションを強調している。
これらの応用の利点は、患者の成果の改善、医療へのアクセスの向上、医療費の削減、医療格差への対処である。
しかしながら、プライバシやセキュリティ上の懸念、技術的なインフラストラクチャの欠如、規制のイシュー、データの正確性、ユーザの遵守、ディジタルディビジョンといった課題や制限には対処する必要がある。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The utilization of mHealth applications for remote monitoring has the potential to revolutionize healthcare delivery by enhancing patient outcomes, increasing access to healthcare services, and reducing healthcare costs. This literature review aims to provide a comprehensive overview of the current state of knowledge on mHealth applications for remote monitoring, including their types, benefits, challenges, and limitations, as well as future directions and research gaps. A systematic search of databases such as PubMed, MEDLINE, EMBASE, CINAHL, and Google Scholar was conducted to identify relevant articles published within the last 5 years. Thematic analysis was used to synthesize the findings. The review highlights various types of mHealth applications used for remote monitoring, such as telemedicine platforms, mobile apps for chronic disease management, and wearable devices. The benefits of these applications include improved patient outcomes, increased access to healthcare, reduced healthcare costs, and addressing healthcare disparities. However, challenges and limitations, such as privacy and security concerns, lack of technical infrastructure, regulatory is-sues, data accuracy, user adherence, and the digital divide, need to be addressed to ensure successful adoption and utilization of mHealth applications. Further research is required in areas such as the long-term effects of mHealth applications on patient outcomes, integration of mHealth data with electronic health records, and the development of artificial intelligence-driven mHealth applica-tions. By harnessing the potential of mHealth applications and addressing the existing challenges, healthcare delivery can be transformed towards a more accessible, cost-effective, and patient-centered model.
- Abstract(参考訳): 遠隔監視のためのmHealthアプリケーションの利用は、患者の成果の向上、医療サービスへのアクセスの拡大、医療費の削減によって、医療提供に革命をもたらす可能性がある。
本文献レビューは,mHealthアプリケーションにおけるリモートモニタリングの状況について,そのタイプ,メリット,課題,限界,今後の方向性,研究ギャップなどについて概観する。
PubMed、MEDLINE、EMBASE、CINAHL、Google Scholarといったデータベースを体系的に検索し、過去5年間に公開された関連記事を特定する。
テーマ分析は結果の合成に使われた。
このレビューでは、遠隔医療プラットフォーム、慢性疾患管理用のモバイルアプリ、ウェアラブルデバイスなど、リモート監視に使用されるさまざまなタイプのmHealthアプリケーションを強調している。
これらの応用の利点は、患者の成果の改善、医療へのアクセスの向上、医療費の削減、医療格差への対処である。
しかし、プライバシやセキュリティ上の懸念、技術基盤の欠如、規制のイシュー、データの正確性、ユーザの定着、デジタルディビジョンといった課題や制限は、mHealthアプリケーションの採用と利用を成功させるために対処する必要がある。
mHealth応用の長期的効果が患者の成績に与える影響、mHealthデータと電子健康記録の統合、人工知能によるmHealth応用薬の開発など、さらなる研究が必要である。
mHealthアプリケーションの可能性を活用し、既存の課題に対処することで、医療提供はよりアクセスしやすく、費用対効果が高く、患者中心のモデルに変換される。
関連論文リスト
- The Digital Transformation in Health: How AI Can Improve the Performance of Health Systems [2.8351008282227266]
モバイルヘルスは、医療提供と患者のエンゲージメントに革命をもたらす可能性がある。
適応的な介入の配信を可能にする人工知能と強化学習プラットフォームを提案する。
このプラットフォームの柔軟性は、さまざまなモバイルヘルスアプリケーションやデジタルデバイスに接続し、パーソナライズされたレコメンデーションを送信することで、デジタルツールがヘルスシステムの結果に与える影響を大幅に改善することができる。
論文 参考訳(メタデータ) (2024-09-24T13:52:15Z) - Health-LLM: Personalized Retrieval-Augmented Disease Prediction System [43.91623010448573]
本稿では,大規模特徴抽出と医療知識トレードオフスコアリングを組み合わせた,革新的なフレームワークHeath-LLMを提案する。
従来の健康管理アプリケーションと比較して,本システムには3つの利点がある。
論文 参考訳(メタデータ) (2024-02-01T16:40:32Z) - Generative AI-Driven Human Digital Twin in IoT-Healthcare: A Comprehensive Survey [53.691704671844406]
IoT(Internet of Things)は、特にヘルスケアにおいて、人間の生活の質を大幅に向上させる。
ヒトデジタルツイン(HDT)は、個体の複製を包括的に特徴付ける革新的なパラダイムとして提案されている。
HDTは、多用途で生き生きとした人間のデジタルテストベッドとして機能することで、医療監視の応用を超えて、IoTヘルスの強化を図っている。
最近、生成人工知能(GAI)は、高度なAIアルゴリズムを利用して、多種多様なデータを自動的に生成、操作、修正できるため、有望なソリューションである可能性がある。
論文 参考訳(メタデータ) (2024-01-22T03:17:41Z) - Towards Smart Healthcare: Challenges and Opportunities in IoT and ML [0.0]
新型コロナウイルス(COVID-19)のパンデミックや他の健康危機は、世界中の医療サービスを促進する必要性を浮き彫りにした。
この章は、IoTヘルスケアセクターに機械学習メソッドを統合する際に直面するハードルを探求することに焦点を当てている。
現在の研究課題と潜在的な機会を包括的にまとめ、三つのシナリオに分類する。
論文 参考訳(メタデータ) (2023-12-09T10:45:44Z) - ZotCare: A Flexible, Personalizable, and Affordable mHealth Service
Provider [2.257929280955475]
この記事では、ZotCareのサービスオーケストレーションに焦点を当て、mHealthリサーチ用のプログラム可能な環境を作成する能力を強調します。
過去にも現在進行中のプロジェクトでも,ZotCareを利用した研究事例をいくつか紹介する。
論文 参考訳(メタデータ) (2023-07-04T20:27:16Z) - The Design and Implementation of a National AI Platform for Public
Healthcare in Italy: Implications for Semantics and Interoperability [62.997667081978825]
イタリア国立衛生局は、その技術機関を通じて人工知能を採用している。
このような広大なプログラムには、知識領域の形式化に特別な注意が必要である。
AIが患者、開業医、健康システムに与える影響について疑問が投げかけられている。
論文 参考訳(メタデータ) (2023-04-24T08:00:02Z) - PulseImpute: A Novel Benchmark Task for Pulsative Physiological Signal
Imputation [54.839600943189915]
モバイルヘルス(英語: Mobile Health、mHealth)は、ウェアラブルセンサーを使用して、日常生活中の参加者の生理状態を高頻度で監視し、時間的に精度の高い健康介入を可能にする能力である。
豊富な計算文学にもかかわらず、既存の技術は多くのmHealthアプリケーションを構成する脈動信号には効果がない。
このギャップに対処するPulseImputeは、現実的なmHealth欠損モデル、幅広いベースラインセット、臨床関連下流タスクを含む、最初の大規模パルス信号計算チャレンジである。
論文 参考訳(メタデータ) (2022-12-14T21:39:15Z) - On Curating Responsible and Representative Healthcare Video
Recommendations for Patient Education and Health Literacy: An Augmented
Intelligence Approach [5.545277272908999]
アメリカの成人の3人に1人がインターネットを使って健康上の懸念を診断し、学んでいる。
健康リテラシーの分割はアルゴリズムの推薦によって悪化する可能性がある。
論文 参考訳(メタデータ) (2022-07-13T01:54:59Z) - MedPerf: Open Benchmarking Platform for Medical Artificial Intelligence
using Federated Evaluation [110.31526448744096]
この可能性を解き明かすには、大規模な異種データに対して医療AIモデルの性能を測定する体系的な方法が必要である、と私たちは主張する。
MedPerfは、医療分野で機械学習をベンチマークするためのオープンフレームワークです。
論文 参考訳(メタデータ) (2021-09-29T18:09:41Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
ユーザの健康状態の重症度を評価するために,テキストコンテンツとコンテキスト情報の両方をモデル化する多視点学習フレームワークを提案する。
多様なNLUビューは、ユーザの健康を評価するために、タスクと個々の疾患の両方に効果を示す。
論文 参考訳(メタデータ) (2020-09-21T03:45:14Z) - Security and Privacy for mHealth and uHealth Systems: a Systematic
Mapping Study [0.0]
本研究の目的は、m/uHealthシステムのセキュリティとプライバシに関する最先端技術を特定し、分類し、比較し、評価することである。
論文 参考訳(メタデータ) (2020-06-22T08:44:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。