論文の概要: Beyond Few-shot Object Detection: A Detailed Survey
- arxiv url: http://arxiv.org/abs/2408.14249v1
- Date: Mon, 26 Aug 2024 13:09:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 14:01:29.207817
- Title: Beyond Few-shot Object Detection: A Detailed Survey
- Title(参考訳): オブジェクト検出の他:詳細な調査
- Authors: Vishal Chudasama, Hiran Sarkar, Pankaj Wasnik, Vineeth N Balasubramanian, Jayateja Kalla,
- Abstract要約: 研究者たちは、数発の学習とオブジェクト検出の原則を融合させる、数発のオブジェクト検出(FSOD)アプローチを導入した。
これらのアプローチは、広範なラベル付きデータセットへの依存を減らす上で重要な役割を果たす。
本研究の目的は,上記の数ショット設定を包括的に理解し,各FSODタスクの方法論を探索することである。
- 参考スコア(独自算出の注目度): 25.465534270637523
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Object detection is a critical field in computer vision focusing on accurately identifying and locating specific objects in images or videos. Traditional methods for object detection rely on large labeled training datasets for each object category, which can be time-consuming and expensive to collect and annotate. To address this issue, researchers have introduced few-shot object detection (FSOD) approaches that merge few-shot learning and object detection principles. These approaches allow models to quickly adapt to new object categories with only a few annotated samples. While traditional FSOD methods have been studied before, this survey paper comprehensively reviews FSOD research with a specific focus on covering different FSOD settings such as standard FSOD, generalized FSOD, incremental FSOD, open-set FSOD, and domain adaptive FSOD. These approaches play a vital role in reducing the reliance on extensive labeled datasets, particularly as the need for efficient machine learning models continues to rise. This survey paper aims to provide a comprehensive understanding of the above-mentioned few-shot settings and explore the methodologies for each FSOD task. It thoroughly compares state-of-the-art methods across different FSOD settings, analyzing them in detail based on their evaluation protocols. Additionally, it offers insights into their applications, challenges, and potential future directions in the evolving field of object detection with limited data.
- Abstract(参考訳): 物体検出はコンピュータビジョンにおいて重要な分野であり、画像やビデオ中の特定の物体を正確に識別し、位置決めすることに焦点を当てている。
従来のオブジェクト検出の方法は、各オブジェクトカテゴリのラベル付きトレーニングデータセットに頼っている。
この問題に対処するため、研究者らは、数発の学習原則とオブジェクト検出原則を融合した、数発のオブジェクト検出(FSOD)アプローチを導入した。
これらのアプローチは、いくつかの注釈付きサンプルだけで、モデルが新しいオブジェクトカテゴリに迅速に適応できるようにする。
従来のFSOD法は従来から研究されてきたが,本調査では,標準FSOD,一般化FSOD,インクリメンタルFSOD,オープンセットFSOD,ドメイン適応FSODなど,さまざまなFSOD設定を対象とするFSOD研究を網羅的にレビューする。
これらのアプローチは、特に効率的な機械学習モデルの必要性が高まっているため、ラベル付きデータセットへの依存を減らす上で重要な役割を果たす。
本研究の目的は,上記の数ショット設定を包括的に理解し,各FSODタスクの方法論を探索することである。
さまざまなFSOD設定の最先端メソッドを徹底的に比較し、評価プロトコルに基づいて詳細に分析する。
さらに、限られたデータによるオブジェクト検出の進化する分野における、アプリケーションや課題、将来的な方向性に関する洞察を提供する。
関連論文リスト
- Deep Learning-Based Object Pose Estimation: A Comprehensive Survey [73.74933379151419]
ディープラーニングに基づくオブジェクトポーズ推定の最近の進歩について論じる。
また、複数の入力データモダリティ、出力ポーズの自由度、オブジェクト特性、下流タスクについても調査した。
論文 参考訳(メタデータ) (2024-05-13T14:44:22Z) - Few-Shot Object Detection: Research Advances and Challenges [15.916463121997843]
Few-shot Object Detection (FSOD)は、少数の学習技術とオブジェクト検出技術を組み合わせて、注釈付きサンプルに制限のある新しいオブジェクトに迅速に適応する。
本稿では,近年のFSOD分野の進歩を概観する包括的調査を行う。
論文 参考訳(メタデータ) (2024-04-07T03:37:29Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
本稿では,LSKNetのバックボーンをDiffusionDetヘッドに統合したオブジェクト検出モデルの詳細な評価を行う。
提案手法は平均精度(MAP)を約45.7%向上させる。
この進歩は、提案された修正の有効性を強調し、航空画像解析の新しいベンチマークを設定する。
論文 参考訳(メタデータ) (2023-11-21T19:49:13Z) - Few-shot Object Detection in Remote Sensing: Lifting the Curse of
Incompletely Annotated Novel Objects [23.171410277239534]
物体検出のための自己学習型FSOD (ST-FSOD) アプローチを提案する。
提案手法は,様々なFSOD設定における最先端性能を大きなマージンで向上させる。
論文 参考訳(メタデータ) (2023-09-19T13:00:25Z) - Improved Region Proposal Network for Enhanced Few-Shot Object Detection [23.871860648919593]
Few-shot Object Detection (FSOD) メソッドは、古典的なオブジェクト検出手法の限界に対する解決策として登場した。
FSODトレーニング段階において,未ラベルの新規物体を正のサンプルとして検出し,利用するための半教師付きアルゴリズムを開発した。
地域提案ネットワーク(RPN)の階層的サンプリング戦略の改善により,大規模オブジェクトに対するオブジェクト検出モデルの認識が向上する。
論文 参考訳(メタデータ) (2023-08-15T02:35:59Z) - Incremental-DETR: Incremental Few-Shot Object Detection via
Self-Supervised Learning [60.64535309016623]
本稿では,DeTRオブジェクト検出器上での微調整および自己教師型学習によるインクリメンタル・デクリメンタル・デクリメンタル・デクリメンタル・オブジェクト検出を提案する。
まず,DeTRのクラス固有のコンポーネントを自己監督で微調整する。
さらに,DeTRのクラス固有のコンポーネントに知識蒸留を施した数発の微調整戦略を導入し,破滅的な忘れを伴わずに新しいクラスを検出するネットワークを奨励する。
論文 参考訳(メタデータ) (2022-05-09T05:08:08Z) - Recent Few-Shot Object Detection Algorithms: A Survey with Performance
Comparison [54.357707168883024]
Few-Shot Object Detection (FSOD)は、人間の学習能力を模倣する。
FSODは、学習した汎用オブジェクトの知識を共通のヘビーテールから新しいロングテールオブジェクトクラスにインテリジェントに転送する。
本稿では,問題定義,共通データセット,評価プロトコルなどを含むFSODの概要を紹介する。
論文 参考訳(メタデータ) (2022-03-27T04:11:28Z) - A Survey of Deep Learning for Low-Shot Object Detection [44.20187548691372]
Low-Shot Object Detection (LSOD)は、アノテーション付きのサンプルからオブジェクトを検出する新しい研究トピックである。
本調査ではLSOD法について概観する。
論文 参考訳(メタデータ) (2021-12-06T06:56:00Z) - A Comparative Review of Recent Few-Shot Object Detection Algorithms [0.0]
ラベル付きデータで新しいクラスに適応するために学習するオブジェクトの少ない検出は、命令的で長期にわたる問題である。
近年の研究では、ターゲットドメインを監督せずに追加データセットに暗黙の手がかりを使って、少数のショット検出器が堅牢なタスク概念を洗練させる方法が研究されている。
論文 参考訳(メタデータ) (2021-10-30T07:57:11Z) - Learning Open-World Object Proposals without Learning to Classify [110.30191531975804]
本研究では,各領域の位置と形状がどの接地トラストオブジェクトとどのように重なり合うかによって,各領域の目的性を純粋に推定する,分類不要なオブジェクトローカライゼーションネットワークを提案する。
この単純な戦略は一般化可能な対象性を学び、クロスカテゴリの一般化に関する既存の提案より優れている。
論文 参考訳(メタデータ) (2021-08-15T14:36:02Z) - Salient Objects in Clutter [130.63976772770368]
本稿では,既存の正当性オブジェクト検出(SOD)データセットの重大な設計バイアスを特定し,対処する。
この設計バイアスは、既存のデータセットで評価した場合、最先端のSODモデルのパフォーマンスの飽和につながった。
我々は,新しい高品質データセットを提案し,前回のsaliencyベンチマークを更新する。
論文 参考訳(メタデータ) (2021-05-07T03:49:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。