Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks
- URL: http://arxiv.org/abs/2408.14254v1
- Date: Mon, 26 Aug 2024 13:16:42 GMT
- Title: Integrated Brain Connectivity Analysis with fMRI, DTI, and sMRI Powered by Interpretable Graph Neural Networks
- Authors: Gang Qu, Ziyu Zhou, Vince D. Calhoun, Aiying Zhang, Yu-Ping Wang,
- Abstract summary: We integrate functional magnetic resonance imaging, diffusion tensor imaging, and structural MRI into a cohesive framework.
Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating a holistic amalgamation of multimodal imaging data.
The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth.
- Score: 17.063133885403154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multimodal neuroimaging modeling has becomes a widely used approach but confronts considerable challenges due to heterogeneity, which encompasses variability in data types, scales, and formats across modalities. This variability necessitates the deployment of advanced computational methods to integrate and interpret these diverse datasets within a cohesive analytical framework. In our research, we amalgamate functional magnetic resonance imaging, diffusion tensor imaging, and structural MRI into a cohesive framework. This integration capitalizes on the unique strengths of each modality and their inherent interconnections, aiming for a comprehensive understanding of the brain's connectivity and anatomical characteristics. Utilizing the Glasser atlas for parcellation, we integrate imaging derived features from various modalities: functional connectivity from fMRI, structural connectivity from DTI, and anatomical features from sMRI within consistent regions. Our approach incorporates a masking strategy to differentially weight neural connections, thereby facilitating a holistic amalgamation of multimodal imaging data. This technique enhances interpretability at connectivity level, transcending traditional analyses centered on singular regional attributes. The model is applied to the Human Connectome Project's Development study to elucidate the associations between multimodal imaging and cognitive functions throughout youth. The analysis demonstrates improved predictive accuracy and uncovers crucial anatomical features and essential neural connections, deepening our understanding of brain structure and function.
Related papers
- Copula-Linked Parallel ICA: A Method for Coupling Structural and Functional MRI brain Networks [0.5277756703318045]
Prior studies fusing functional MRI (fMRI) and structural MRI (sMRI) have shown the benefits of this approach.
We developed a novel fusion method, by combining deep learning frameworks, copulas and independent component analysis (ICA), named copula linked parallel ICA (CLiP-ICA)
CLiP-ICA effectively captures both strongly and weakly linked sMRI and fMRI networks, including the cerebellum, sensorimotor, visual, cognitive control, and default mode networks.
arXiv Detail & Related papers (2024-10-14T01:35:41Z) - Multi-modal Cross-domain Self-supervised Pre-training for fMRI and EEG Fusion [3.8153469790341084]
We propose a novel approach that leverages self-supervised learning to synergize multi-modal information across domains.
We constructed a large-scale pre-training dataset and pretrained MCSP model by leveraging proposed self-supervised paradigms.
Our study contributes a significant advancement in the fusion of fMRI and EEG, marking a novel integration of cross-domain features.
arXiv Detail & Related papers (2024-09-27T20:25:17Z) - MindFormer: Semantic Alignment of Multi-Subject fMRI for Brain Decoding [50.55024115943266]
We introduce a novel semantic alignment method of multi-subject fMRI signals using so-called MindFormer.
This model is specifically designed to generate fMRI-conditioned feature vectors that can be used for conditioning Stable Diffusion model for fMRI- to-image generation or large language model (LLM) for fMRI-to-text generation.
Our experimental results demonstrate that MindFormer generates semantically consistent images and text across different subjects.
arXiv Detail & Related papers (2024-05-28T00:36:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
In this study, we first construct the brain-effective network via the dynamic causal model.
We then introduce an interpretable graph learning framework termed Spatio-Temporal Embedding ODE (STE-ODE)
This framework incorporates specifically designed directed node embedding layers, aiming at capturing the dynamic interplay between structural and effective networks.
arXiv Detail & Related papers (2024-05-21T20:37:07Z) - Psychometry: An Omnifit Model for Image Reconstruction from Human Brain Activity [60.983327742457995]
Reconstructing the viewed images from human brain activity bridges human and computer vision through the Brain-Computer Interface.
We devise Psychometry, an omnifit model for reconstructing images from functional Magnetic Resonance Imaging (fMRI) obtained from different subjects.
arXiv Detail & Related papers (2024-03-29T07:16:34Z) - Joint Self-Supervised and Supervised Contrastive Learning for Multimodal
MRI Data: Towards Predicting Abnormal Neurodevelopment [5.771221868064265]
We present a novel joint self-supervised and supervised contrastive learning method to learn the robust latent feature representation from multimodal MRI data.
Our method has the capability to facilitate computer-aided diagnosis within clinical practice, harnessing the power of multimodal data.
arXiv Detail & Related papers (2023-12-22T21:05:51Z) - fMRI-PTE: A Large-scale fMRI Pretrained Transformer Encoder for
Multi-Subject Brain Activity Decoding [54.17776744076334]
We propose fMRI-PTE, an innovative auto-encoder approach for fMRI pre-training.
Our approach involves transforming fMRI signals into unified 2D representations, ensuring consistency in dimensions and preserving brain activity patterns.
Our contributions encompass introducing fMRI-PTE, innovative data transformation, efficient training, a novel learning strategy, and the universal applicability of our approach.
arXiv Detail & Related papers (2023-11-01T07:24:22Z) - Multi-modal Graph Neural Network for Early Diagnosis of Alzheimer's
Disease from sMRI and PET Scans [11.420077093805382]
We propose to use graph neural networks (GNN) that are designed to deal with problems in non-Euclidean domains.
In this study, we demonstrate how brain networks can be created from sMRI or PET images.
We then present a multi-modal GNN framework where each modality has its own branch of GNN and a technique is proposed to combine the multi-modal data.
arXiv Detail & Related papers (2023-07-31T02:04:05Z) - Fusing Structural and Functional Connectivities using Disentangled VAE
for Detecting MCI [9.916963496386089]
A novel hierarchical structural-functional connectivity fusing (HSCF) model is proposed to construct brain structural-functional connectivity matrices.
Results from a wide range of tests performed on the public Alzheimer's Disease Neuroimaging Initiative database show that the proposed model performs better than competing approaches.
arXiv Detail & Related papers (2023-06-16T05:22:25Z) - Functional2Structural: Cross-Modality Brain Networks Representation
Learning [55.24969686433101]
Graph mining on brain networks may facilitate the discovery of novel biomarkers for clinical phenotypes and neurodegenerative diseases.
We propose a novel graph learning framework, known as Deep Signed Brain Networks (DSBN), with a signed graph encoder.
We validate our framework on clinical phenotype and neurodegenerative disease prediction tasks using two independent, publicly available datasets.
arXiv Detail & Related papers (2022-05-06T03:45:36Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.