Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach
- URL: http://arxiv.org/abs/2408.14259v1
- Date: Mon, 26 Aug 2024 13:26:44 GMT
- Title: Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach
- Authors: Vittoriano Muttillo, Claudio Di Sipio, Riccardo Rubei, Luca Berardinelli, MohammadHadi Dehghani,
- Abstract summary: We propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations.
In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations.
- Score: 1.8874331450711404
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Producing accurate software models is crucial in model-driven software engineering (MDE). However, modeling complex systems is an error-prone task that requires deep application domain knowledge. In the past decade, several automated techniques have been proposed to support academic and industrial practitioners by providing relevant modeling operations. Nevertheless, those techniques require a huge amount of training data that cannot be available due to several factors, e.g., privacy issues. The advent of large language models (LLMs) can support the generation of synthetic data although state-of-the-art approaches are not yet supporting the generation of modeling operations. To fill the gap, we propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations using LLMs. In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations. In addition, we generate a completely new dataset of modeling events by telling on the most prominent LLMs currently available. As a proof of concept, we instantiate the proposed framework using a set of existing modeling tools employed in industrial use cases within different European projects. To assess the proposed methodology, we first evaluate the capability of the examined LLMs to generate realistic modeling operations by relying on well-founded distance metrics. Then, we evaluate the recommended operations by considering real-world industrial modeling artifacts. Our findings demonstrate that LLMs can generate modeling events even though the overall accuracy is higher when considering human-based operations.
Related papers
- A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition [4.123601037699469]
In real-world domain modeling, engineers usually decompose complex tasks into easily solvable sub-tasks.
We propose an LLM-based domain modeling approach via question decomposition, similar to developer's modeling process.
Preliminary results show that our approach outperforms the single-prompt-based prompt.
arXiv Detail & Related papers (2024-10-13T14:28:04Z) - Fine-tuning large language models for domain adaptation: Exploration of training strategies, scaling, model merging and synergistic capabilities [4.389938747401259]
This work explores the effects of fine-tuning strategies on Large Language Models (LLMs) in domains such as materials science and engineering.
We find that the merging of multiple fine-tuned models can lead to the emergence of capabilities that surpass the individual contributions of the parent models.
arXiv Detail & Related papers (2024-09-05T11:49:53Z) - Model Merging in LLMs, MLLMs, and Beyond: Methods, Theories, Applications and Opportunities [89.40778301238642]
Model merging is an efficient empowerment technique in the machine learning community.
There is a significant gap in the literature regarding a systematic and thorough review of these techniques.
arXiv Detail & Related papers (2024-08-14T16:58:48Z) - ORLM: A Customizable Framework in Training Large Models for Automated Optimization Modeling [15.673219028826173]
We introduce a semi-automated data synthesis framework designed for optimization modeling issues, named OR-Instruct.
We train various open-source LLMs with a capacity of 7 billion parameters (dubbed ORLMs)
The resulting model demonstrates significantly enhanced optimization modeling capabilities, achieving state-of-the-art performance across the NL4OPT, MAMO, and IndustryOR benchmarks.
arXiv Detail & Related papers (2024-05-28T01:55:35Z) - Process Modeling With Large Language Models [42.0652924091318]
This paper explores the integration of Large Language Models (LLMs) into process modeling.
We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models.
Preliminary results demonstrate the framework's ability to streamline process modeling tasks.
arXiv Detail & Related papers (2024-03-12T11:27:47Z) - TrainerAgent: Customizable and Efficient Model Training through
LLM-Powered Multi-Agent System [14.019244136838017]
TrainerAgent is a multi-agent framework including Task, Data, Model and Server agents.
These agents analyze user-defined tasks, input data, and requirements (e.g., accuracy, speed), optimizing them from both data and model perspectives to obtain satisfactory models, and finally deploy these models as online service.
This research presents a significant advancement in achieving desired models with increased efficiency and quality as compared to traditional model development.
arXiv Detail & Related papers (2023-11-11T17:39:24Z) - Towards Efficient Task-Driven Model Reprogramming with Foundation Models [52.411508216448716]
Vision foundation models exhibit impressive power, benefiting from the extremely large model capacity and broad training data.
However, in practice, downstream scenarios may only support a small model due to the limited computational resources or efficiency considerations.
This brings a critical challenge for the real-world application of foundation models: one has to transfer the knowledge of a foundation model to the downstream task.
arXiv Detail & Related papers (2023-04-05T07:28:33Z) - Scaling Vision-Language Models with Sparse Mixture of Experts [128.0882767889029]
We show that mixture-of-experts (MoE) techniques can achieve state-of-the-art performance on a range of benchmarks over dense models of equivalent computational cost.
Our research offers valuable insights into stabilizing the training of MoE models, understanding the impact of MoE on model interpretability, and balancing the trade-offs between compute performance when scaling vision-language models.
arXiv Detail & Related papers (2023-03-13T16:00:31Z) - Minimal Value-Equivalent Partial Models for Scalable and Robust Planning
in Lifelong Reinforcement Learning [56.50123642237106]
Common practice in model-based reinforcement learning is to learn models that model every aspect of the agent's environment.
We argue that such models are not particularly well-suited for performing scalable and robust planning in lifelong reinforcement learning scenarios.
We propose new kinds of models that only model the relevant aspects of the environment, which we call "minimal value-minimal partial models"
arXiv Detail & Related papers (2023-01-24T16:40:01Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.