A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition
- URL: http://arxiv.org/abs/2410.09854v1
- Date: Sun, 13 Oct 2024 14:28:04 GMT
- Title: A Model Is Not Built By A Single Prompt: LLM-Based Domain Modeling With Question Decomposition
- Authors: Ru Chen, Jingwei Shen, Xiao He,
- Abstract summary: In real-world domain modeling, engineers usually decompose complex tasks into easily solvable sub-tasks.
We propose an LLM-based domain modeling approach via question decomposition, similar to developer's modeling process.
Preliminary results show that our approach outperforms the single-prompt-based prompt.
- Score: 4.123601037699469
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain modeling, a crucial part of model-driven engineering, demands extensive domain knowledge and experience from engineers. When the system description is highly complicated, the modeling task can become particularly challenging and time-consuming. Large language Models(LLMs) can assist by automatically generating an initial object model from the system description. Although LLMs have demonstrated remarkable code-generation ability, they still struggle with model-generation using a single prompt. In real-world domain modeling, engineers usually decompose complex tasks into easily solvable sub-tasks, significantly controlling complexity and enhancing model quality. Inspired by this, we propose an LLM-based domain modeling approach via question decomposition, similar to developer's modeling process. Following conventional modeling guidelines, we divide the model generation task into several sub-tasks, i.e., class generation, association and aggregation generation, and inheritance generation. For each sub-task, we carefully design the prompt by choosing more efficient query words and providing essential modeling knowledge to unlock the modeling potential of LLMs. To sum up all the sub-tasks solutions, we implemente a proof-of-object tool integrated into the standard Ecore editor that asks LLMs to generate an object model from the system description. We evaluate our approach with 20 systems from different application domains. The preliminary results show that our approach outperforms the single-prompt-based prompt by improving recall values and F1 scores in most systems for modeling the classes, attributes, and relationships.
Related papers
- Towards Synthetic Trace Generation of Modeling Operations using In-Context Learning Approach [1.8874331450711404]
We propose a conceptual framework that combines modeling event logs, intelligent modeling assistants, and the generation of modeling operations.
In particular, the architecture comprises modeling components that help the designer specify the system, record its operation within a graphical modeling environment, and automatically recommend relevant operations.
arXiv Detail & Related papers (2024-08-26T13:26:44Z) - EMR-Merging: Tuning-Free High-Performance Model Merging [55.03509900949149]
We show that Elect, Mask & Rescale-Merging (EMR-Merging) shows outstanding performance compared to existing merging methods.
EMR-Merging is tuning-free, thus requiring no data availability or any additional training while showing impressive performance.
arXiv Detail & Related papers (2024-05-23T05:25:45Z) - Process Modeling With Large Language Models [42.0652924091318]
This paper explores the integration of Large Language Models (LLMs) into process modeling.
We propose a framework that leverages LLMs for the automated generation and iterative refinement of process models.
Preliminary results demonstrate the framework's ability to streamline process modeling tasks.
arXiv Detail & Related papers (2024-03-12T11:27:47Z) - Learning to Decode Collaboratively with Multiple Language Models [37.31339648499042]
We propose a method to teach multiple large language models (LLM) to collaborate by interleaving their generations at the token level.
Token-level collaboration during decoding allows for a fusion of each model's expertise in a manner tailored to the specific task at hand.
arXiv Detail & Related papers (2024-03-06T17:23:28Z) - Model Composition for Multimodal Large Language Models [71.5729418523411]
We propose a new paradigm through the model composition of existing MLLMs to create a new model that retains the modal understanding capabilities of each original model.
Our basic implementation, NaiveMC, demonstrates the effectiveness of this paradigm by reusing modality encoders and merging LLM parameters.
arXiv Detail & Related papers (2024-02-20T06:38:10Z) - Towards Robust Multi-Modal Reasoning via Model Selection [7.6621866737827045]
LLM serves as the "brain" of the agent, orchestrating multiple tools for collaborative multi-step task solving.
We propose the $textitM3$ framework as a plug-in with negligible runtime overhead at test-time.
Our experiments reveal that our framework enables dynamic model selection, considering both user inputs and subtask dependencies.
arXiv Detail & Related papers (2023-10-12T16:06:18Z) - Adapting Large Language Models for Content Moderation: Pitfalls in Data
Engineering and Supervised Fine-tuning [79.53130089003986]
Large Language Models (LLMs) have become a feasible solution for handling tasks in various domains.
In this paper, we introduce how to fine-tune a LLM model that can be privately deployed for content moderation.
arXiv Detail & Related papers (2023-10-05T09:09:44Z) - Model LEGO: Creating Models Like Disassembling and Assembling Building Blocks [53.09649785009528]
In this paper, we explore a paradigm that does not require training to obtain new models.
Similar to the birth of CNN inspired by receptive fields in the biological visual system, we propose Model Disassembling and Assembling.
For model assembling, we present the alignment padding strategy and parameter scaling strategy to construct a new model tailored for a specific task.
arXiv Detail & Related papers (2022-03-25T05:27:28Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
In data-rich domains such as vision, language, and speech, deep learning prevails to deliver high-performance task-specific models.
Deep learning in resource-limited domains still faces multiple challenges including (i) limited data, (ii) constrained model development cost, and (iii) lack of adequate pre-trained models for effective finetuning.
Model reprogramming enables resource-efficient cross-domain machine learning by repurposing a well-developed pre-trained model from a source domain to solve tasks in a target domain without model finetuning.
arXiv Detail & Related papers (2022-02-22T02:33:54Z) - Multiscale Generative Models: Improving Performance of a Generative
Model Using Feedback from Other Dependent Generative Models [10.053377705165786]
We take a first step towards building interacting generative models (GANs) that reflects the interaction in real world.
We build and analyze a hierarchical set-up where a higher-level GAN is conditioned on the output of multiple lower-level GANs.
We present a technique of using feedback from the higher-level GAN to improve performance of lower-level GANs.
arXiv Detail & Related papers (2022-01-24T13:05:56Z) - Text Modular Networks: Learning to Decompose Tasks in the Language of
Existing Models [61.480085460269514]
We propose a framework for building interpretable systems that learn to solve complex tasks by decomposing them into simpler ones solvable by existing models.
We use this framework to build ModularQA, a system that can answer multi-hop reasoning questions by decomposing them into sub-questions answerable by a neural factoid single-span QA model and a symbolic calculator.
arXiv Detail & Related papers (2020-09-01T23:45:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.