論文の概要: Uncertainties of Latent Representations in Computer Vision
- arxiv url: http://arxiv.org/abs/2408.14281v1
- Date: Mon, 26 Aug 2024 14:02:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:51:27.160063
- Title: Uncertainties of Latent Representations in Computer Vision
- Title(参考訳): コンピュータビジョンにおける潜在表現の不確かさ
- Authors: Michael Kirchhof,
- Abstract要約: この論文は、事前訓練されたコンピュータビジョンモデルの潜在表現ベクトルにそれらを追加することで、不確実性推定を容易にアクセスできるようにする。
観測不可能な潜在表現に関するこれらの観測不可能な不確実性は、確実に正しいことを示す。
- 参考スコア(独自算出の注目度): 2.33877878310217
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Uncertainty quantification is a key pillar of trustworthy machine learning. It enables safe reactions under unsafe inputs, like predicting only when the machine learning model detects sufficient evidence, discarding anomalous data, or emitting warnings when an error is likely to be inbound. This is particularly crucial in safety-critical areas like medical image classification or self-driving cars. Despite the plethora of proposed uncertainty quantification methods achieving increasingly higher scores on performance benchmarks, uncertainty estimates are often shied away from in practice. Many machine learning projects start from pretrained latent representations that come without uncertainty estimates. Uncertainties would need to be trained by practitioners on their own, which is notoriously difficult and resource-intense. This thesis makes uncertainty estimates easily accessible by adding them to the latent representation vectors of pretrained computer vision models. Besides proposing approaches rooted in probability and decision theory, such as Monte-Carlo InfoNCE (MCInfoNCE) and loss prediction, we delve into both theoretical and empirical questions. We show that these unobservable uncertainties about unobservable latent representations are indeed provably correct. We also provide an uncertainty-aware representation learning (URL) benchmark to compare these unobservables against observable ground-truths. Finally, we compile our findings to pretrain lightweight representation uncertainties on large-scale computer vision models that transfer to unseen datasets in a zero-shot manner. Our findings do not only advance the current theoretical understanding of uncertainties over latent variables, but also facilitate the access to uncertainty quantification for future researchers inside and outside the field, enabling straightforward but trustworthy machine learning.
- Abstract(参考訳): 不確かさの定量化は、信頼できる機械学習の鍵となる柱である。
マシンラーニングモデルが十分な証拠を検出した場合にのみ予測したり、異常なデータを破棄したり、エラーがインバウンドする可能性がある場合に警告を発したりするなど、安全でない入力の下で安全な反応を可能にする。
これは特に、医療画像の分類や自動運転車のような安全に重要な分野において重要である。
性能ベンチマークのスコアがますます高くなるような不確実性定量化手法が提案されているにもかかわらず、不確実性推定は実際からしばしば排除される。
多くの機械学習プロジェクトは、不確実性見積なしで得られる事前訓練された潜在表現から始まる。
不確実性は、自分自身で実践者によって訓練される必要がある。
この論文は、事前訓練されたコンピュータビジョンモデルの潜在表現ベクトルにそれらを追加することで、不確実性推定を容易にアクセスできるようにする。
モンテカルロ情報NCE(MCInfoNCE)や損失予測など,確率と決定理論に根ざしたアプローチの提案に加えて,理論的および実証的な問題についても検討する。
観測不可能な潜在表現に関するこれらの観測不可能な不確実性は、確実に正しいことを示す。
また,不確実性認識型表現学習(URL)のベンチマークを行い,観測対象と観測対象とを比較した。
最後に,ゼロショット方式で未知のデータセットに転送する大規模コンピュータビジョンモデルにおける軽量表現の不確かさを事前訓練するために,本研究の成果をコンパイルする。
我々の発見は、潜伏変数に対する現在の不確実性に関する理論的理解を前進させるだけでなく、将来の研究者のフィールド内外における不確実性定量化へのアクセスを促進し、簡単だが信頼できる機械学習を可能にしている。
関連論文リスト
- A comparative study of conformal prediction methods for valid uncertainty quantification in machine learning [0.0]
論文は、誰もが不確実性に気付いていて、それがどれほど重要か、そしてそれを恐れずにそれをどのように受け入れるか、という世界を探求しようとします。
しかし、正確な不確実性推定を誰でも得るための特定のフレームワークが選別され、分析される。
論文 参考訳(メタデータ) (2024-05-03T13:19:33Z) - Learning for Counterfactual Fairness from Observational Data [62.43249746968616]
公正な機械学習は、人種、性別、年齢などの特定の保護された(感受性のある)属性によって記述されるある種のサブグループに対して、学習モデルのバイアスを取り除くことを目的としている。
カウンターファクトフェアネスを達成するための既存の手法の前提条件は、データに対する因果モデルの事前の人間の知識である。
本研究では,新しいフレームワークCLAIREを提案することにより,因果関係を付与せずに観測データから対実的に公正な予測を行う問題に対処する。
論文 参考訳(メタデータ) (2023-07-17T04:08:29Z) - URL: A Representation Learning Benchmark for Transferable Uncertainty
Estimates [26.453013634439802]
本稿では,不確かさを意識した表現学習ベンチマークを提案する。
これは、新しい計量を用いて不確実性推定のゼロショット転送可能性を測定する。
その結果,表現自体の不確実性に注目するアプローチや,上流階級の確率に基づいて予測リスクを直接上回る手法が得られた。
論文 参考訳(メタデータ) (2023-07-07T19:34:04Z) - Sources of Uncertainty in Machine Learning -- A Statisticians' View [3.1498833540989413]
本論文は,機械学習に関連する2種類の不確実性について定式化することを目的とする。
機械学習における統計的概念と不確実性の間の類似性を引き合いに出し、データの役割とその不確実性への影響を実証する。
論文 参考訳(メタデータ) (2023-05-26T07:44:19Z) - Interpretable Self-Aware Neural Networks for Robust Trajectory
Prediction [50.79827516897913]
本稿では,意味概念間で不確実性を分散する軌道予測のための解釈可能なパラダイムを提案する。
実世界の自動運転データに対する我々のアプローチを検証し、最先端のベースラインよりも優れた性能を示す。
論文 参考訳(メタデータ) (2022-11-16T06:28:20Z) - Robust uncertainty estimates with out-of-distribution pseudo-inputs
training [0.0]
我々は、信頼性のあるデータを与えられていない不確実性予測器を明示的に訓練することを提案する。
データ無しでは訓練できないので、入力空間の情報的低密度領域において擬似入力を生成するメカニズムを提供する。
総合的な評価により、様々なタスクにおける最先端性能を維持しながら、不確実性の頑健かつ解釈可能な予測が得られることを示す。
論文 参考訳(メタデータ) (2022-01-15T17:15:07Z) - Uncertainty-Aware Reliable Text Classification [21.517852608625127]
ディープニューラルネットワークは、分類タスクの予測精度の成功に大きく貢献している。
ドメインシフトやアウト・オブ・ディストリビューション(out-of-distribution)の例が存在する現実の環境では、過度に信頼された予測を行う傾向があります。
補助外乱と擬似外乱サンプルを併用して, あるクラスの事前知識でモデルを訓練する, 安価なフレームワークを提案する。
論文 参考訳(メタデータ) (2021-07-15T04:39:55Z) - Learning Uncertainty For Safety-Oriented Semantic Segmentation In
Autonomous Driving [77.39239190539871]
自律運転における安全クリティカル画像セグメンテーションを実現するために、不確実性推定をどのように活用できるかを示す。
相似性関数によって測定された不一致予測に基づく新しい不確実性尺度を導入する。
本研究では,提案手法が競合手法よりも推論時間において計算集約性が低いことを示す。
論文 参考訳(メタデータ) (2021-05-28T09:23:05Z) - Heterogeneous-Agent Trajectory Forecasting Incorporating Class
Uncertainty [54.88405167739227]
本稿では,エージェントのクラス確率を明示的に組み込んだヘテロジニアスエージェント軌道予測手法であるHAICUを提案する。
さらに,新たな挑戦的な実世界の自動運転データセットであるpupも紹介する。
軌道予測にクラス確率を組み込むことで,不確実性に直面した性能が著しく向上することを示す。
論文 参考訳(メタデータ) (2021-04-26T10:28:34Z) - Approaching Neural Network Uncertainty Realism [53.308409014122816]
自動運転車などの安全クリティカルなシステムには、定量化または少なくとも上限の不確実性が不可欠です。
マハラノビス距離に基づく統計的テストにより、厳しい品質基準である不確実性リアリズムを評価します。
自動車分野に採用し、プレーンエンコーダデコーダモデルと比較して、不確実性リアリズムを大幅に改善することを示した。
論文 参考訳(メタデータ) (2021-01-08T11:56:12Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
我々は,モデル予測に関連する不確実性を推定し,伝達することにより,相補的な透明性の形式を考えることについて議論する。
モデルの不公平性を緩和し、意思決定を強化し、信頼できるシステムを構築するために不確実性がどのように使われるかを説明する。
この研究は、機械学習、可視化/HCI、デザイン、意思決定、公平性にまたがる文学から引き出された学際的レビューを構成する。
論文 参考訳(メタデータ) (2020-11-15T17:26:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。