論文の概要: Deep learning-based ecological analysis of camera trap images is impacted by training data quality and size
- arxiv url: http://arxiv.org/abs/2408.14348v1
- Date: Mon, 26 Aug 2024 15:26:27 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:31:39.248743
- Title: Deep learning-based ecological analysis of camera trap images is impacted by training data quality and size
- Title(参考訳): 深層学習に基づくカメラトラップ画像の生態学的解析は、訓練データの品質とサイズに影響を及ぼす
- Authors: Omiros Pantazis, Peggy Bevan, Holly Pringle, Guilherme Braga Ferreira, Daniel J. Ingram, Emily Madsen, Liam Thomas, Dol Raj Thanet, Thakur Silwal, Santosh Rayamajhi, Gabriel Brostow, Oisin Mac Aodha, Kate E. Jones,
- Abstract要約: アフリカサバンナとアジア亜熱帯乾燥林のカメラトラップデータの解析を行った。
我々は、専門家による種同定から得られた重要な生態指標と、深層ニューラルネットワークから生成された指標を比較した。
その結果、モデルアーキテクチャは最小限の影響しか与えないが、大量のノイズとデータセットサイズがこれらの指標に大きく影響していることが判明した。
- 参考スコア(独自算出の注目度): 11.153016596465593
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large wildlife image collections from camera traps are crucial for biodiversity monitoring, offering insights into species richness, occupancy, and activity patterns. However, manual processing of these data is time-consuming, hindering analytical processes. To address this, deep neural networks have been widely adopted to automate image analysis. Despite their growing use, the impact of model training decisions on downstream ecological metrics remains unclear. Here, we analyse camera trap data from an African savannah and an Asian sub-tropical dry forest to compare key ecological metrics derived from expert-generated species identifications with those generated from deep neural networks. We assess the impact of model architecture, training data noise, and dataset size on ecological metrics, including species richness, occupancy, and activity patterns. Our results show that while model architecture has minimal impact, large amounts of noise and reduced dataset size significantly affect these metrics. Nonetheless, estimated ecological metrics are resilient to considerable noise, tolerating up to 10% error in species labels and a 50% reduction in training set size without changing significantly. We also highlight that conventional metrics like classification error may not always be representative of a model's ability to accurately measure ecological metrics. We conclude that ecological metrics derived from deep neural network predictions closely match those calculated from expert labels and remain robust to variations in the factors explored. However, training decisions for deep neural networks can impact downstream ecological analysis. Therefore, practitioners should prioritize creating large, clean training sets and evaluate deep neural network solutions based on their ability to measure the ecological metrics of interest.
- Abstract(参考訳): カメラトラップからの大規模な野生生物画像収集は、生物多様性の監視に不可欠であり、種の豊かさ、占有率、活動パターンに関する洞察を提供する。
しかし、これらのデータの手作業による処理は時間を要するため、分析プロセスの妨げとなる。
これを解決するために、画像解析を自動化するためにディープニューラルネットワークが広く採用されている。
利用が増えているにもかかわらず、下流の生態指標に対するモデルトレーニングの決定の影響は依然として不明である。
ここでは,アフリカサバンナとアジア亜熱帯乾燥林のカメラトラップデータを分析し,専門家による種同定から得られた重要な生態指標と深層ニューラルネットワークから生成されたカメラトラップデータを比較した。
モデルアーキテクチャ, トレーニングデータノイズ, データセットサイズが, 種多様性, 占有率, 活動パターンなどの生態指標に与える影響を評価する。
その結果、モデルアーキテクチャは最小限の影響しか与えないが、大量のノイズとデータセットサイズがこれらの指標に大きく影響していることが判明した。
それでも、推定された生態指標はかなりのノイズに耐性があり、種ラベルで最大10%の誤差を許容し、大きく変化することなくトレーニングセットのサイズを50%削減する。
また、分類エラーのような従来のメトリクスは、必ずしも生態系のメトリクスを正確に測定するモデルの能力を表すものではないことも強調する。
我々は、深層ニューラルネットワーク予測から得られた生態指標が、専門家ラベルから算出した指標と密に一致し、探索された要因の変動に頑健なままである、と結論付けた。
しかし、ディープニューラルネットワークのトレーニング決定は下流の生態学的分析に影響を及ぼす可能性がある。
したがって、実践者は、興味のある生態指標を測定する能力に基づいて、大規模でクリーンなトレーニングセットの作成とディープニューラルネットワークソリューションの評価を優先すべきである。
関連論文リスト
- Learning to learn ecosystems from limited data -- a meta-learning approach [0.0]
我々は,時間遅延フィードフォワードニューラルネットワークを用いたメタラーニングフレームワークを開発し,生態系の長期的挙動を予測する。
この枠組みは、限られたデータで生態系の「動的気候」を正確に再構築できることを示す。
論文 参考訳(メタデータ) (2024-10-02T16:23:34Z) - Enhancing Ecological Monitoring with Multi-Objective Optimization: A Novel Dataset and Methodology for Segmentation Algorithms [17.802456388479616]
オーストラリア, ニューサウスウェールズ州ベガバレーで, 外来種および外来種を捉えた6,096個の高分解能空中画像のユニークなセマンティックセマンティックセマンティクスデータセットを導入した。
このデータセットは、草種の重複と分布のため、困難な課題を示す。
データセットとコードは公開され、コンピュータビジョン、機械学習、生態学の研究を促進することを目的としている。
論文 参考訳(メタデータ) (2024-07-25T18:27:27Z) - Spatial Implicit Neural Representations for Global-Scale Species Mapping [72.92028508757281]
ある種が観察された場所の集合を考えると、その種がどこにいても存在しないかを予測するためのモデルを構築することが目的である。
従来の手法は、新たな大規模クラウドソースデータセットを活用するのに苦労している。
本研究では,47k種の地理的範囲を同時に推定するために,空間入射ニューラル表現(SINR)を用いる。
論文 参考訳(メタデータ) (2023-06-05T03:36:01Z) - Neuroevolution-based Classifiers for Deforestation Detection in Tropical
Forests [62.997667081978825]
森林破壊や荒廃により、毎年何百万ヘクタールもの熱帯林が失われる。
監視・森林破壊検知プログラムは、犯罪者の予防・処罰のための公共政策に加えて、使用されている。
本稿では,熱帯林の森林破壊検出作業におけるニューロ進化技術(NEAT)に基づくパターン分類器の利用を提案する。
論文 参考訳(メタデータ) (2022-08-23T16:04:12Z) - Ensembles of Vision Transformers as a New Paradigm for Automated
Classification in Ecology [0.0]
データ効率のよい画像変換器(DeiTs)のアンサンブルが従来のSOTA(SOTA)よりも大幅に優れていたことを示す。
テストしたすべてのデータセットに対して、新しいSOTAを実現し、以前のSOTAの18.48%から87.50%の誤差を削減した。
論文 参考訳(メタデータ) (2022-03-03T14:16:22Z) - DeepAdversaries: Examining the Robustness of Deep Learning Models for
Galaxy Morphology Classification [47.38422424155742]
銀河の形態分類では、画像データにおける摂動の影響について検討する。
ドメイン適応によるトレーニングはモデルロバスト性を向上し、これらの摂動の影響を緩和することを示す。
論文 参考訳(メタデータ) (2021-12-28T21:29:02Z) - Classification of animal sounds in a hyperdiverse rainforest using
Convolutional Neural Networks [0.0]
受動的に記録された音場から機械学習アプローチによる自動種検出は有望な手法である。
本研究では,ボルネオの熱帯林の音環境と,移動学習による畳み込みニューラルネットワークモデル(CNN)を用いた。
以上の結果から,トランスファー学習とデータ拡張は,多くの稀な種を持つ小さなサウンドスケーププロジェクトにおいても,CNNを用いて声の分類が可能であることが示唆された。
論文 参考訳(メタデータ) (2021-11-29T21:34:57Z) - Taxonomizing local versus global structure in neural network loss
landscapes [60.206524503782006]
ロスランドスケープが世界規模で良好に接続されている場合, 最適なテスト精度が得られることを示す。
また、モデルが小さい場合や、品質の低いデータに訓練された場合、世界規模で接続の不十分なランドスケープが生じる可能性があることも示しています。
論文 参考訳(メタデータ) (2021-07-23T13:37:14Z) - StatEcoNet: Statistical Ecology Neural Networks for Species Distribution
Modeling [8.534315844706367]
本稿では、計算持続可能性と統計生態学におけるコアタスクである種分布モデリング(SDM)に焦点を当てる。
SDMでは、景観上の種の発生パターンは、一連の場所における観察に基づいて環境特性によって予測される。
本稿では,SDMのユニークな課題を解決するため,StatEcoNetというフレームワークを提案する。
論文 参考訳(メタデータ) (2021-02-17T02:19:00Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern image from the same developmental stage。
正確な段階のトレーニングデータをラベル付けするのは、生物学者にとっても非常に時間がかかる。
限られた訓練画像を用いてISH画像を正確に分類する2段階の低ショット学習フレームワークを提案する。
論文 参考訳(メタデータ) (2020-10-20T06:06:06Z) - Automatic image-based identification and biomass estimation of
invertebrates [70.08255822611812]
時間を要する分類と分類は、どれだけの昆虫を処理できるかに強い制限を課す。
我々は、人間の専門家による分類と識別の標準的な手動アプローチを、自動画像ベース技術に置き換えることを提案する。
分類タスクには最先端のResnet-50とInceptionV3 CNNを使用する。
論文 参考訳(メタデータ) (2020-02-05T21:38:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。