論文の概要: Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning
- arxiv url: http://arxiv.org/abs/2408.14369v1
- Date: Mon, 26 Aug 2024 15:49:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-27 13:31:39.229403
- Title: Exploiting Conjugate Label Information for Multi-Instance Partial-Label Learning
- Title(参考訳): 多インスタンス部分ラベル学習のための共役ラベル情報の爆発的抽出
- Authors: Wei Tang, Weijia Zhang, Min-Ling Zhang,
- Abstract要約: MIPL(Multi-instance partial-label Learning)は、各トレーニングサンプルが1つの真のラベルといくつかの偽陽性を含む候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現されるシナリオに対処する。
ELIMIPLは共役ラベル情報を利用して曖昧性を改善する。
- 参考スコア(独自算出の注目度): 61.00359941983515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-instance partial-label learning (MIPL) addresses scenarios where each training sample is represented as a multi-instance bag associated with a candidate label set containing one true label and several false positives. Existing MIPL algorithms have primarily focused on mapping multi-instance bags to candidate label sets for disambiguation, disregarding the intrinsic properties of the label space and the supervised information provided by non-candidate label sets. In this paper, we propose an algorithm named ELIMIPL, i.e., Exploiting conjugate Label Information for Multi-Instance Partial-Label learning, which exploits the conjugate label information to improve the disambiguation performance. To achieve this, we extract the label information embedded in both candidate and non-candidate label sets, incorporating the intrinsic properties of the label space. Experimental results obtained from benchmark and real-world datasets demonstrate the superiority of the proposed ELIMIPL over existing MIPL algorithms and other well-established partial-label learning algorithms.
- Abstract(参考訳): MIPL(Multi-instance partial-label Learning)は、各トレーニングサンプルが1つの真のラベルといくつかの偽陽性を含む候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現されるシナリオに対処する。
既存のMIPLアルゴリズムは主に、ラベル空間の内在的性質と非候補ラベルセットによって提供される教師情報を無視して、曖昧性を示すための候補ラベルセットにマルチインスタンスバッグをマッピングすることに重点を置いている。
本稿では,共役ラベル情報を利用した多インスタンス部分ラベル学習のための共役ラベル情報を出力するELIMIPLというアルゴリズムを提案する。
そこで我々は,候補ラベルと非候補ラベルの双方に埋め込まれたラベル情報を抽出し,ラベル空間の内在的性質を取り入れた。
ベンチマークおよび実世界のデータセットから得られた実験結果は、既存のMIPLアルゴリズムや他の確立された部分ラベル学習アルゴリズムよりも提案したERIMIPLの方が優れていることを示す。
関連論文リスト
- Leveraging Label Semantics and Meta-Label Refinement for Multi-Label Question Classification [11.19022605804112]
本稿では,新手法RR2QCを多ラベル質問分類に適用する。
ラベルセマンティクスとメタラベルの改良を使用して、パーソナライズされた学習とリソースレコメンデーションを強化する。
実験の結果,RR2QCはPrecision@kとF1スコアの既存の分類方法よりも優れていた。
論文 参考訳(メタデータ) (2024-11-04T06:27:14Z) - Disambiguated Attention Embedding for Multi-Instance Partial-Label
Learning [68.56193228008466]
多くの実世界のタスクでは、関連するオブジェクトは、候補ラベルセットに関連付けられたマルチインスタンスバッグとして表現することができる。
既存のMIPLアプローチは、各インスタンスに拡張候補ラベルセットを割り当て、インスタンスレベルのラベルからバッグレベルのラベルを集約することで、インスタンス空間のパラダイムに従っている。
本稿では,DEMIPLという直感的なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-05-26T13:25:17Z) - Complementary Classifier Induced Partial Label Learning [54.61668156386079]
部分ラベル学習(PLL)では、各トレーニングサンプルは候補ラベルのセットに関連付けられ、そのうち1つのみが有効である。
曖昧さでは、既存の研究は通常、非候補ラベルセットの有効性を十分に調査しない。
本稿では,非候補ラベルを用いて補完的分類器を誘導し,従来の分類器に対する逆関係を自然に形成する。
論文 参考訳(メタデータ) (2023-05-17T02:13:23Z) - Multi-Instance Partial-Label Learning: Towards Exploiting Dual Inexact
Supervision [53.530957567507365]
実世界のタスクでは、各トレーニングサンプルは、1つの基底真実ラベルといくつかの偽陽性ラベルを含む候補ラベルセットに関連付けられている。
本稿では,Multi-instance partial-label learning (MIPL) などの問題を定式化する。
既存のマルチインスタンス学習アルゴリズムと部分ラベル学習アルゴリズムはMIPL問題の解法に最適である。
論文 参考訳(メタデータ) (2022-12-18T03:28:51Z) - Acknowledging the Unknown for Multi-label Learning with Single Positive
Labels [65.5889334964149]
伝統的に、全ての無注釈ラベルは、単一正のマルチラベル学習(SPML)において負のラベルとして仮定される。
本研究では, 予測確率のエントロピーを最大化するエントロピー最大化(EM)損失を提案する。
非通知ラベルの正負ラベル不均衡を考慮し、非対称耐性戦略とより精密な監視を行うセルフペースト手順を備えた非対称擬似ラベル(APL)を提案する。
論文 参考訳(メタデータ) (2022-03-30T11:43:59Z) - Integrating Unsupervised Clustering and Label-specific Oversampling to
Tackle Imbalanced Multi-label Data [13.888344214818733]
クラスタリングは、マルチラベルデータセットの重要で局所的に接続された領域を見つけるために実行される。
クラスタ内の少数点のみが、オーバーサンプリングに使用される合成マイノリティ点を生成するために使用される。
12のマルチラベルデータセットと複数のマルチラベルアルゴリズムを用いた実験により,提案手法が良好に動作したことを示す。
論文 参考訳(メタデータ) (2021-09-25T19:00:00Z) - Active Learning in Incomplete Label Multiple Instance Multiple Label
Learning [17.5720245903743]
MIML設定におけるアクティブラーニングのための新しいバッグクラスペア方式を提案する。
我々のアプローチは、効率的かつ正確な推論を伴う識別的グラフィカルモデルに基づいている。
論文 参考訳(メタデータ) (2021-07-22T17:01:28Z) - SPL-MLL: Selecting Predictable Landmarks for Multi-Label Learning [87.27700889147144]
我々は、入力(予測可能)に応じて予測しやすく、他の可能なラベル(表現可能)をうまく回復できるランドマークとして、ラベルの小さなサブセットを選択することを提案する。
我々は,ADM(Alternating Direction Method)を用いてこの問題を解決する。実世界のデータセットに関する実証研究により,本手法が他の最先端手法よりも優れた分類性能を実現することを示す。
論文 参考訳(メタデータ) (2020-08-16T11:07:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。