Employing Artificial Intelligence to Steer Exascale Workflows with Colmena
- URL: http://arxiv.org/abs/2408.14434v1
- Date: Mon, 26 Aug 2024 17:21:19 GMT
- Title: Employing Artificial Intelligence to Steer Exascale Workflows with Colmena
- Authors: Logan Ward, J. Gregory Pauloski, Valerie Hayot-Sasson, Yadu Babuji, Alexander Brace, Ryan Chard, Kyle Chard, Rajeev Thakur, Ian Foster,
- Abstract summary: Colmena allows scientists to define how their application should respond to events as a series of cooperative agents.
We describe the challenges we overcame while deploying applications on exascale systems, and the science we have enhanced through AI.
Our vision is that Colmena will spur creative solutions that harness AI across many domains of scientific computing.
- Score: 37.42013214123005
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Computational workflows are a common class of application on supercomputers, yet the loosely coupled and heterogeneous nature of workflows often fails to take full advantage of their capabilities. We created Colmena to leverage the massive parallelism of a supercomputer by using Artificial Intelligence (AI) to learn from and adapt a workflow as it executes. Colmena allows scientists to define how their application should respond to events (e.g., task completion) as a series of cooperative agents. In this paper, we describe the design of Colmena, the challenges we overcame while deploying applications on exascale systems, and the science workflows we have enhanced through interweaving AI. The scaling challenges we discuss include developing steering strategies that maximize node utilization, introducing data fabrics that reduce communication overhead of data-intensive tasks, and implementing workflow tasks that cache costly operations between invocations. These innovations coupled with a variety of application patterns accessible through our agent-based steering model have enabled science advances in chemistry, biophysics, and materials science using different types of AI. Our vision is that Colmena will spur creative solutions that harness AI across many domains of scientific computing.
Related papers
- Collaborative AI in Sentiment Analysis: System Architecture, Data Prediction and Deployment Strategies [3.3374611485861116]
Large language model (LLM) based artificial intelligence technologies have been a game-changer, particularly in sentiment analysis.
However, integrating diverse AI models for processing complex multimodal data and the associated high costs of feature extraction presents significant challenges.
This study introduces a collaborative AI framework designed to efficiently distribute and resolve tasks across various AI systems.
arXiv Detail & Related papers (2024-10-17T06:14:34Z) - GenAgent: Build Collaborative AI Systems with Automated Workflow Generation -- Case Studies on ComfyUI [64.57616646552869]
This paper explores collaborative AI systems that use to enhance performance to integrate models, data sources, and pipelines to solve complex and diverse tasks.
We introduce GenAgent, an LLM-based framework that automatically generates complex, offering greater flexibility and scalability compared to monolithic models.
The results demonstrate that GenAgent outperforms baseline approaches in both run-level and task-level evaluations.
arXiv Detail & Related papers (2024-09-02T17:44:10Z) - AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation [0.0]
Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration.
Our engine empowers agents to comprehend and implement complex, adapting to dynamic web environments with unparalleled efficiency.
The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks.
arXiv Detail & Related papers (2024-03-15T10:27:17Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - AI-coupled HPC Workflows [1.5469452301122175]
Introduction to AI/ML models into the traditional HPC has been an enabler of highly accurate modeling.
Various modes of integrating AI/ML models to HPC computations, resulting in diverse types of AI-coupled HPC.
arXiv Detail & Related papers (2022-08-24T19:16:43Z) - COCOI: Contact-aware Online Context Inference for Generalizable
Non-planar Pushing [87.7257446869134]
General contact-rich manipulation problems are long-standing challenges in robotics.
Deep reinforcement learning has shown great potential in solving robot manipulation tasks.
We propose COCOI, a deep RL method that encodes a context embedding of dynamics properties online.
arXiv Detail & Related papers (2020-11-23T08:20:21Z) - COG: Connecting New Skills to Past Experience with Offline Reinforcement
Learning [78.13740204156858]
We show that we can reuse prior data to extend new skills simply through dynamic programming.
We demonstrate the effectiveness of our approach by chaining together several behaviors seen in prior datasets for solving a new task.
We train our policies in an end-to-end fashion, mapping high-dimensional image observations to low-level robot control commands.
arXiv Detail & Related papers (2020-10-27T17:57:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.