AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation
- URL: http://arxiv.org/abs/2403.10171v2
- Date: Mon, 27 May 2024 05:03:09 GMT
- Title: AUTONODE: A Neuro-Graphic Self-Learnable Engine for Cognitive GUI Automation
- Authors: Arkajit Datta, Tushar Verma, Rajat Chawla, Mukunda N. S, Ishaan Bhola,
- Abstract summary: Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration.
Our engine empowers agents to comprehend and implement complex, adapting to dynamic web environments with unparalleled efficiency.
The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In recent advancements within the domain of Large Language Models (LLMs), there has been a notable emergence of agents capable of addressing Robotic Process Automation (RPA) challenges through enhanced cognitive capabilities and sophisticated reasoning. This development heralds a new era of scalability and human-like adaptability in goal attainment. In this context, we introduce AUTONODE (Autonomous User-interface Transformation through Online Neuro-graphic Operations and Deep Exploration). AUTONODE employs advanced neuro-graphical techniques to facilitate autonomous navigation and task execution on web interfaces, thereby obviating the necessity for predefined scripts or manual intervention. Our engine empowers agents to comprehend and implement complex workflows, adapting to dynamic web environments with unparalleled efficiency. Our methodology synergizes cognitive functionalities with robotic automation, endowing AUTONODE with the ability to learn from experience. We have integrated an exploratory module, DoRA (Discovery and mapping Operation for graph Retrieval Agent), which is instrumental in constructing a knowledge graph that the engine utilizes to optimize its actions and achieve objectives with minimal supervision. The versatility and efficacy of AUTONODE are demonstrated through a series of experiments, highlighting its proficiency in managing a diverse array of web-based tasks, ranging from data extraction to transaction processing.
Related papers
- Imperative Learning: A Self-supervised Neural-Symbolic Learning Framework for Robot Autonomy [31.818923556912495]
We introduce a new self-supervised neural-symbolic (NeSy) computational framework, imperative learning (IL) for robot autonomy.
We formulate IL as a special bilevel optimization (BLO) which enables reciprocal learning over the three modules.
We show that IL can significantly enhance robot autonomy capabilities and we anticipate that it will catalyze further research across diverse domains.
arXiv Detail & Related papers (2024-06-23T12:02:17Z) - SWE-agent: Agent-Computer Interfaces Enable Automated Software Engineering [79.07755560048388]
SWE-agent is a system that facilitates LM agents to autonomously use computers to solve software engineering tasks.
SWE-agent's custom agent-computer interface (ACI) significantly enhances an agent's ability to create and edit code files, navigate entire repositories, and execute tests and other programs.
We evaluate SWE-agent on SWE-bench and HumanEvalFix, achieving state-of-the-art performance on both with a pass@1 rate of 12.5% and 87.7%, respectively.
arXiv Detail & Related papers (2024-05-06T17:41:33Z) - Cognitive Planning for Object Goal Navigation using Generative AI Models [0.979851640406258]
We present a novel framework for solving the object goal navigation problem that generates efficient exploration strategies.
Our approach enables a robot to navigate unfamiliar environments by leveraging Large Language Models (LLMs) and Large Vision-Language Models (LVLMs)
arXiv Detail & Related papers (2024-03-30T10:54:59Z) - CoCo-Agent: A Comprehensive Cognitive MLLM Agent for Smartphone GUI Automation [61.68049335444254]
Multimodal large language models (MLLMs) have shown remarkable potential as human-like autonomous language agents to interact with real-world environments.
We propose a Comprehensive Cognitive LLM Agent, CoCo-Agent, with two novel approaches, comprehensive environment perception (CEP) and conditional action prediction (CAP)
With our technical design, our agent achieves new state-of-the-art performance on AITW and META-GUI benchmarks, showing promising abilities in realistic scenarios.
arXiv Detail & Related papers (2024-02-19T08:29:03Z) - An Interactive Agent Foundation Model [49.77861810045509]
We propose an Interactive Agent Foundation Model that uses a novel multi-task agent training paradigm for training AI agents.
Our training paradigm unifies diverse pre-training strategies, including visual masked auto-encoders, language modeling, and next-action prediction.
We demonstrate the performance of our framework across three separate domains -- Robotics, Gaming AI, and Healthcare.
arXiv Detail & Related papers (2024-02-08T18:58:02Z) - A Central Motor System Inspired Pre-training Reinforcement Learning for Robotic Control [7.227887302864789]
We propose CMS-PRL, a pre-training reinforcement learning method inspired by the Central Motor System.
First, we introduce a fusion reward mechanism that combines the basic motor reward with mutual information reward.
Second, we design a skill encoding method inspired by the motor program of the basal ganglia, providing rich and continuous skill instructions.
Third, we propose a skill activity function to regulate motor skill activity, enabling the generation of skills with different activity levels.
arXiv Detail & Related papers (2023-11-14T00:49:12Z) - Incremental procedural and sensorimotor learning in cognitive humanoid
robots [52.77024349608834]
This work presents a cognitive agent that can learn procedures incrementally.
We show the cognitive functions required in each substage and how adding new functions helps address tasks previously unsolved by the agent.
Results show that this approach is capable of solving complex tasks incrementally.
arXiv Detail & Related papers (2023-04-30T22:51:31Z) - Deep Active Learning for Computer Vision: Past and Future [50.19394935978135]
Despite its indispensable role for developing AI models, research on active learning is not as intensive as other research directions.
By addressing data automation challenges and coping with automated machine learning systems, active learning will facilitate democratization of AI technologies.
arXiv Detail & Related papers (2022-11-27T13:07:14Z) - Backprop-Free Reinforcement Learning with Active Neural Generative
Coding [84.11376568625353]
We propose a computational framework for learning action-driven generative models without backpropagation of errors (backprop) in dynamic environments.
We develop an intelligent agent that operates even with sparse rewards, drawing inspiration from the cognitive theory of planning as inference.
The robust performance of our agent offers promising evidence that a backprop-free approach for neural inference and learning can drive goal-directed behavior.
arXiv Detail & Related papers (2021-07-10T19:02:27Z) - Modular approach to data preprocessing in ALOHA and application to a
smart industry use case [0.0]
The paper addresses a modular approach, integrated into the ALOHA tool flow, to support the data preprocessing and transformation pipeline.
To demonstrate the effectiveness of the approach, we present some experimental results related to a keyword spotting use case.
arXiv Detail & Related papers (2021-02-02T06:48:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.