論文の概要: Handling abort commands for household kitchen robots
- arxiv url: http://arxiv.org/abs/2408.14480v1
- Date: Fri, 16 Aug 2024 06:20:37 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:52:18.436716
- Title: Handling abort commands for household kitchen robots
- Title(参考訳): 家庭内キッチンロボットにおける停職命令の処理
- Authors: Darius Has, Adrian Groza, Mihai Pomarlan,
- Abstract要約: ロボットに与えられた中止命令を処理するためのソリューションを提案する。
ロボットは計画シーケンスを使用して、以前受信したコマンドを優雅にキャンセルするために実行すべきアクションのシーケンスを見つける。
- 参考スコア(独自算出の注目度): 2.990411348977783
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a solution for handling abort commands given to robots. The solution is exemplified with a running scenario with household kitchen robots. The robot uses planning to find sequences of actions that must be performed in order to gracefully cancel a previously received command. The Planning Domain Definition Language (PDDL) is used to write a domain to model kitchen activities and behaviours, and this domain is enriched with knowledge from online ontologies and knowledge graphs, like DBPedia. We discuss the results obtained in different scenarios.
- Abstract(参考訳): ロボットに与えられた中止命令を処理するためのソリューションを提案する。
このソリューションは、家庭用キッチンロボットによる実行シナリオで実証されている。
このロボットは、事前に受信したコマンドを優雅にキャンセルするために、実行すべきアクションのシーケンスを見つけるために計画されている。
計画ドメイン定義言語(PDDL)はキッチンの活動や振る舞いをモデル化するためのドメインを記述するために使用され、このドメインはDBPediaのようなオンラインオントロジーや知識グラフからの知識に富んでいる。
異なるシナリオで得られた結果について議論する。
関連論文リスト
- Track2Act: Predicting Point Tracks from Internet Videos enables Generalizable Robot Manipulation [65.46610405509338]
我々は、ゼロショットロボット操作を可能にする汎用的な目標条件ポリシーを学習することを目指している。
私たちのフレームワークであるTrack2Actは、ゴールに基づいて将来のタイムステップで画像内のポイントがどのように動くかを予測する。
学習したトラック予測を残留ポリシーと組み合わせることで,多種多様な汎用ロボット操作が可能となることを示す。
論文 参考訳(メタデータ) (2024-05-02T17:56:55Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
大きな言語モデル(LLM)は、オープン語彙タスクを実行するロボットエージェントを作成することで、驚くべき成果を上げている。
LLMを用いた部分的に観測可能なタスクのための対話型計画手法を提案する。
論文 参考訳(メタデータ) (2023-12-11T22:54:44Z) - SEAL: Semantic Frame Execution And Localization for Perceiving Afforded
Robot Actions [5.522839151632667]
本稿では,ロボット操作行動のセマンティックフレーム表現を拡張し,セマンティックフレーム実行と局所化の問題をグラフィカルモデルとして導入する。
SEAL問題に対して、ロボットに与えられた行動の場所として、有限のセマンティックフレームに対する信念を維持するための非パラメトリックセマンティックフレームマッピング(SeFM)アルゴリズムについて述べる。
論文 参考訳(メタデータ) (2023-03-24T15:25:41Z) - Zero-Shot Robot Manipulation from Passive Human Videos [59.193076151832145]
我々は,人間の映像からエージェント非依存の行動表現を抽出するフレームワークを開発した。
我々の枠組みは、人間の手の動きを予測することに基づいている。
トレーニングされたモデルゼロショットを物理ロボット操作タスクにデプロイする。
論文 参考訳(メタデータ) (2023-02-03T21:39:52Z) - ProgPrompt: Generating Situated Robot Task Plans using Large Language
Models [68.57918965060787]
大規模言語モデル(LLM)は、タスク計画中の潜在的な次のアクションを評価するために使用することができる。
本稿では, プログラム型LCMプロンプト構造を用いて, 配置環境間での計画生成機能を実現する。
論文 参考訳(メタデータ) (2022-09-22T20:29:49Z) - Correcting Robot Plans with Natural Language Feedback [88.92824527743105]
ロボットの修正のための表現的かつ柔軟なツールとして自然言語を探索する。
これらの変換により、ユーザは目標を正し、ロボットの動きを更新し、計画上のエラーから回復できる。
本手法により,シミュレーション環境や実環境において,複数の制約を合成し,未知のシーン,オブジェクト,文に一般化することが可能となる。
論文 参考訳(メタデータ) (2022-04-11T15:22:43Z) - Reasoning with Scene Graphs for Robot Planning under Partial
Observability [7.121002367542985]
我々は,ロボットが視覚的文脈情報で推論できるロボット計画のためのシーン解析アルゴリズムを開発した。
シミュレーションで複数の3D環境と実際のロボットが収集したデータセットを用いて実験を行った。
論文 参考訳(メタデータ) (2022-02-21T18:45:56Z) - Behavior Tree-Based Asynchronous Task Planning for Multiple Mobile
Robots using a Data Distribution Service [2.6667914906637487]
動作木(BT)上に構築された複数のロボットのためのタスク計画フレームワークを提案する。
ロボットのタスクを効率的に計画するために,提案したタスクタイプを用いて単一のタスク計画ユニットを実装した。
3つの移動ロボットは、提案された単一タスク計画ユニットによって4つの目標位置を交互に移動するために実験的に調整された。
論文 参考訳(メタデータ) (2022-01-26T13:16:02Z) - Learning Language-Conditioned Robot Behavior from Offline Data and
Crowd-Sourced Annotation [80.29069988090912]
本研究では,ロボットインタラクションの大規模なオフラインデータセットから視覚に基づく操作タスクを学習する問題について検討する。
クラウドソースの自然言語ラベルを用いたオフラインロボットデータセットの活用を提案する。
提案手法は目標画像仕様と言語条件付き模倣技術の両方を25%以上上回っていることがわかった。
論文 参考訳(メタデータ) (2021-09-02T17:42:13Z) - Caption Generation of Robot Behaviors based on Unsupervised Learning of
Action Segments [10.356412004005767]
ロボットの行動シーケンスとその自然言語キャプションをブリッジすることは、人間のアシストロボットの説明可能性を高める重要な課題である。
本稿では,人間支援ロボットの動作を記述した自然言語キャプションを生成するシステムを提案する。
論文 参考訳(メタデータ) (2020-03-23T03:44:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。