Retrieval Augmented Generation for Dynamic Graph Modeling
- URL: http://arxiv.org/abs/2408.14523v2
- Date: Sun, 27 Apr 2025 07:28:13 GMT
- Title: Retrieval Augmented Generation for Dynamic Graph Modeling
- Authors: Yuxia Wu, Lizi Liao, Yuan Fang,
- Abstract summary: We propose a novel framework, Retrieval-Augmented Generation for Dynamic Graph modeling (RAG4DyG)<n>RAG4DyG enhances dynamic graph predictions by incorporating contextually and temporally relevant examples from broader graph structures.<n>The proposed framework is designed to be effective in both transductive and inductive scenarios.
- Score: 15.09162213134372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling dynamic graphs, such as those found in social networks, recommendation systems, and e-commerce platforms, is crucial for capturing evolving relationships and delivering relevant insights over time. Traditional approaches primarily rely on graph neural networks with temporal components or sequence generation models, which often focus narrowly on the historical context of target nodes. This limitation restricts the ability to adapt to new and emerging patterns in dynamic graphs. To address this challenge, we propose a novel framework, Retrieval-Augmented Generation for Dynamic Graph modeling (RAG4DyG), which enhances dynamic graph predictions by incorporating contextually and temporally relevant examples from broader graph structures. Our approach includes a time- and context-aware contrastive learning module to identify high-quality demonstrations and a graph fusion strategy to effectively integrate these examples with historical contexts. The proposed framework is designed to be effective in both transductive and inductive scenarios, ensuring adaptability to previously unseen nodes and evolving graph structures. Extensive experiments across multiple real-world datasets demonstrate the effectiveness of RAG4DyG in improving predictive accuracy and adaptability for dynamic graph modeling. The code and datasets are publicly available at https://github.com/YuxiaWu/RAG4DyG.
Related papers
- Revisiting Graph Neural Networks on Graph-level Tasks: Comprehensive Experiments, Analysis, and Improvements [54.006506479865344]
We propose a unified evaluation framework for graph-level Graph Neural Networks (GNNs)
This framework provides a standardized setting to evaluate GNNs across diverse datasets.
We also propose a novel GNN model with enhanced expressivity and generalization capabilities.
arXiv Detail & Related papers (2025-01-01T08:48:53Z) - A Deep Probabilistic Framework for Continuous Time Dynamic Graph Generation [4.568104644312763]
We formalize this approach as DG-Gen, a generative framework for continuous time dynamic graphs.
Our experiments demonstrate that DG-Gen not only generates higher fidelity graphs compared to traditional methods but also significantly advances link prediction tasks.
arXiv Detail & Related papers (2024-12-20T05:34:11Z) - LLM-Based Multi-Agent Systems are Scalable Graph Generative Models [73.28294528654885]
GraphAgent-Generator (GAG) is a novel simulation-based framework for dynamic, text-attributed social graph generation.
GAG simulates the temporal node and edge generation processes for zero-shot social graph generation.
The resulting graphs exhibit adherence to seven key macroscopic network properties, achieving an 11% improvement in microscopic graph structure metrics.
arXiv Detail & Related papers (2024-10-13T12:57:08Z) - DyG-Mamba: Continuous State Space Modeling on Dynamic Graphs [59.434893231950205]
Dynamic graph learning aims to uncover evolutionary laws in real-world systems.
We propose DyG-Mamba, a new continuous state space model for dynamic graph learning.
We show that DyG-Mamba achieves state-of-the-art performance on most datasets.
arXiv Detail & Related papers (2024-08-13T15:21:46Z) - TimeGraphs: Graph-based Temporal Reasoning [64.18083371645956]
TimeGraphs is a novel approach that characterizes dynamic interactions as a hierarchical temporal graph.
Our approach models the interactions using a compact graph-based representation, enabling adaptive reasoning across diverse time scales.
We evaluate TimeGraphs on multiple datasets with complex, dynamic agent interactions, including a football simulator, the Resistance game, and the MOMA human activity dataset.
arXiv Detail & Related papers (2024-01-06T06:26:49Z) - DURENDAL: Graph deep learning framework for temporal heterogeneous
networks [0.5156484100374057]
Temporal heterogeneous networks (THNs) are evolving networks that characterize many real-world applications.
We propose DURENDAL, a graph deep learning framework for THNs.
arXiv Detail & Related papers (2023-09-30T10:46:01Z) - Local-Global Information Interaction Debiasing for Dynamic Scene Graph
Generation [51.92419880088668]
We propose a novel DynSGG model based on multi-task learning, DynSGG-MTL, which introduces the local interaction information and global human-action interaction information.
Long-temporal human actions supervise the model to generate multiple scene graphs that conform to the global constraints and avoid the model being unable to learn the tail predicates.
arXiv Detail & Related papers (2023-08-10T01:24:25Z) - Dynamic Graph Representation Learning via Edge Temporal States Modeling and Structure-reinforced Transformer [5.093187534912688]
We introduce the Recurrent Structure-reinforced Graph Transformer (RSGT), a novel framework for dynamic graph representation learning.
RSGT captures temporal node representations encoding both graph topology and evolving dynamics through a recurrent learning paradigm.
We show RSGT's superior performance in discrete dynamic graph representation learning, consistently outperforming existing methods in dynamic link prediction tasks.
arXiv Detail & Related papers (2023-04-20T04:12:50Z) - Dynamic Graph Representation Learning with Neural Networks: A Survey [0.0]
Dynamic graph representations have emerged as a new machine learning problem.
This paper aims at providing a review of problems and models related to dynamic graph learning.
arXiv Detail & Related papers (2023-04-12T09:39:17Z) - Learning Dynamic Graph Embeddings with Neural Controlled Differential
Equations [21.936437653875245]
This paper focuses on representation learning for dynamic graphs with temporal interactions.
We propose a generic differential model for dynamic graphs that characterises the continuously dynamic evolution of node embedding trajectories.
Our framework exhibits several desirable characteristics, including the ability to express dynamics on evolving graphs without integration by segments.
arXiv Detail & Related papers (2023-02-22T12:59:38Z) - DyTed: Disentangled Representation Learning for Discrete-time Dynamic
Graph [59.583555454424]
We propose a novel disenTangled representation learning framework for discrete-time Dynamic graphs, namely DyTed.
We specially design a temporal-clips contrastive learning task together with a structure contrastive learning to effectively identify the time-invariant and time-varying representations respectively.
arXiv Detail & Related papers (2022-10-19T14:34:12Z) - Efficient Dynamic Graph Representation Learning at Scale [66.62859857734104]
We propose Efficient Dynamic Graph lEarning (EDGE), which selectively expresses certain temporal dependency via training loss to improve the parallelism in computations.
We show that EDGE can scale to dynamic graphs with millions of nodes and hundreds of millions of temporal events and achieve new state-of-the-art (SOTA) performance.
arXiv Detail & Related papers (2021-12-14T22:24:53Z) - Anomaly Detection in Dynamic Graphs via Transformer [30.926884264054042]
We present a novel Transformer-based Anomaly Detection framework for DYnamic graph (TADDY)
Our framework constructs a comprehensive node encoding strategy to better represent each node's structural and temporal roles in an evolving graphs stream.
Our proposed TADDY framework outperforms the state-of-the-art methods by a large margin on four real-world datasets.
arXiv Detail & Related papers (2021-06-18T02:27:19Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
We propose a novel graph neural network approach, called TCL, which deals with the dynamically-evolving graph in a continuous-time fashion.
To the best of our knowledge, this is the first attempt to apply contrastive learning to representation learning on dynamic graphs.
arXiv Detail & Related papers (2021-05-17T15:33:25Z) - Temporal Graph Networks for Deep Learning on Dynamic Graphs [4.5158585619109495]
We present Temporal Graph Networks (TGNs), a generic, efficient framework for deep learning on dynamic graphs represented as sequences of timed events.
Thanks to a novel combination of memory modules and graph-based operators, TGNs are able to significantly outperform previous approaches being at the same time more computationally efficient.
arXiv Detail & Related papers (2020-06-18T16:06:18Z) - Jointly Modeling Aspect and Sentiment with Dynamic Heterogeneous Graph
Neural Networks [27.59070337052869]
Target-Based Sentiment Analysis aims to detect the opinion aspects (aspect extraction) and the sentiment polarities (sentiment detection) towards them.
Both the previous pipeline and integrated methods fail to precisely model the innate connection between these two objectives.
We propose a novel dynamic heterogeneous graph to jointly model the two objectives in an explicit way.
arXiv Detail & Related papers (2020-04-14T11:27:30Z) - Tensor Graph Convolutional Networks for Multi-relational and Robust
Learning [74.05478502080658]
This paper introduces a tensor-graph convolutional network (TGCN) for scalable semi-supervised learning (SSL) from data associated with a collection of graphs, that are represented by a tensor.
The proposed architecture achieves markedly improved performance relative to standard GCNs, copes with state-of-the-art adversarial attacks, and leads to remarkable SSL performance over protein-to-protein interaction networks.
arXiv Detail & Related papers (2020-03-15T02:33:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.