論文の概要: BreakNet: Discontinuity-Resilient Multi-Scale Transformer Segmentation of Retinal Layers
- arxiv url: http://arxiv.org/abs/2408.14606v1
- Date: Mon, 26 Aug 2024 19:59:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:44:05.396815
- Title: BreakNet: Discontinuity-Resilient Multi-Scale Transformer Segmentation of Retinal Layers
- Title(参考訳): BreakNet: 網膜層の非連続弾性多スケール変圧器セグメンテーション
- Authors: Razieh Ganjee, Bingjie Wang, Lingyun Wang, Chengcheng Zhao, José-Alain Sahel, Shaohua Pi,
- Abstract要約: BreakNetは、シャドーアーティファクトによる境界の不連続に対処するために設計されたトランスフォーマーベースのセグメンテーションモデルである。
以上の結果から,BreakNetは網膜の定量化と解析を大幅に改善する可能性が示唆された。
- 参考スコア(独自算出の注目度): 0.8953337264557399
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Visible light optical coherence tomography (vis-OCT) is gaining traction for retinal imaging due to its high resolution and functional capabilities. However, the significant absorption of hemoglobin in the visible light range leads to pronounced shadow artifacts from retinal blood vessels, posing challenges for accurate layer segmentation. In this study, we present BreakNet, a multi-scale Transformer-based segmentation model designed to address boundary discontinuities caused by these shadow artifacts. BreakNet utilizes hierarchical Transformer and convolutional blocks to extract multi-scale global and local feature maps, capturing essential contextual, textural, and edge characteristics. The model incorporates decoder blocks that expand pathwaproys to enhance the extraction of fine details and semantic information, ensuring precise segmentation. Evaluated on rodent retinal images acquired with prototype vis-OCT, BreakNet demonstrated superior performance over state-of-the-art segmentation models, such as TCCT-BP and U-Net, even when faced with limited-quality ground truth data. Our findings indicate that BreakNet has the potential to significantly improve retinal quantification and analysis.
- Abstract(参考訳): 可視光コヒーレンストモグラフィー (vis-OCT) は高分解能と機能的機能のために網膜イメージングの牽引力が高まっている。
しかし、可視光域におけるヘモグロビンの顕著な吸収は、網膜血管からのシャドーアーティファクトを顕著に示し、正確な層分割の課題を提起する。
本研究では,これらのシャドウアーティファクトによる境界の不連続性に対処するために,マルチスケールのトランスフォーマーベースセグメンテーションモデルであるBreakNetを提案する。
BreakNetは階層型トランスフォーマーと畳み込みブロックを使用して、マルチスケールのグローバルおよびローカルな特徴マップを抽出し、必須のコンテキスト、テクスチャ、エッジの特徴をキャプチャする。
このモデルは、パスワプロスを拡張するデコーダブロックを組み込んで、細部や意味情報の抽出を強化し、正確なセグメンテーションを保証する。
プロトタイプのvis-OCTで取得した象牙質網膜画像から評価したところ,TCT-BPやU-Netのような最先端のセグメンテーションモデルよりも優れた性能を示した。
以上の結果から,BreakNetは網膜の定量化と解析を大幅に改善する可能性が示唆された。
関連論文リスト
- TransResNet: Integrating the Strengths of ViTs and CNNs for High Resolution Medical Image Segmentation via Feature Grafting [6.987177704136503]
医用画像領域で高解像度画像が好ましいのは、基礎となる方法の診断能力を大幅に向上させるためである。
医用画像セグメンテーションのための既存のディープラーニング技術のほとんどは、空間次元が小さい入力画像に最適化されており、高解像度画像では不十分である。
我々はTransResNetという並列処理アーキテクチャを提案し、TransformerとCNNを並列的に組み合わせ、マルチ解像度画像から特徴を独立して抽出する。
論文 参考訳(メタデータ) (2024-10-01T18:22:34Z) - Light-weight Retinal Layer Segmentation with Global Reasoning [14.558920359236572]
OCT画像に適用可能な網膜層セグメンテーションのためのLightReSegを提案する。
提案手法は,現在の最先端技術であるTransUnetと比較して,セグメンテーション性能が向上する。
論文 参考訳(メタデータ) (2024-04-25T05:42:41Z) - Slicer Networks [8.43960865813102]
医用画像解析のための新しいアーキテクチャであるスライダネットワークを提案する。
スライダ・ネットワークは、スプレイティング・ブルーリング・スライシング・プロセスを通じて、機能マップを戦略的に洗練し、アップサンプルする。
異なる医療画像アプリケーションにわたる実験により、スライカーネットワークの精度と効率が向上したことが確認された。
論文 参考訳(メタデータ) (2024-01-18T09:50:26Z) - Distance Weighted Trans Network for Image Completion [52.318730994423106]
本稿では,DWT(Distance-based Weighted Transformer)を利用した画像コンポーネント間の関係をよりよく理解するためのアーキテクチャを提案する。
CNNは、粗い事前の局所的なテクスチャ情報を強化するために使用される。
DWTブロックは、特定の粗いテクスチャやコヒーレントな視覚構造を復元するために使用される。
論文 参考訳(メタデータ) (2023-10-11T12:46:11Z) - LMBiS-Net: A Lightweight Multipath Bidirectional Skip Connection based
CNN for Retinal Blood Vessel Segmentation [0.0]
ブラディングアイの病気は、しばしば変化した網膜形態と相関し、眼底画像の網膜構造をセグメント化することによって臨床的に識別できる。
深層学習は、医用画像のセグメンテーションにおいて有望であるが、反復的な畳み込みとプール操作への依存は、エッジ情報の表現を妨げる可能性がある。
LMBiS-Net と呼ばれる軽量な画素レベルのCNNを網膜血管のセグメンテーションのために提案する。
論文 参考訳(メタデータ) (2023-09-10T09:03:53Z) - Reliable Joint Segmentation of Retinal Edema Lesions in OCT Images [55.83984261827332]
本稿では,信頼性の高いマルチスケールウェーブレットエンハンストランスネットワークを提案する。
本研究では,ウェーブレット型特徴抽出器ネットワークとマルチスケール変圧器モジュールを統合したセグメンテーションバックボーンを開発した。
提案手法は,他の最先端セグメンテーション手法と比較して信頼性の高いセグメンテーション精度を実現する。
論文 参考訳(メタデータ) (2022-12-01T07:32:56Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - DepthFormer: Exploiting Long-Range Correlation and Local Information for
Accurate Monocular Depth Estimation [50.08080424613603]
高精度な単分子深度推定には長距離相関が不可欠である。
我々は,このグローバルコンテキストを効果的な注意機構でモデル化するためにTransformerを活用することを提案する。
提案したモデルであるDepthFormerは、最先端のモノクル深度推定手法をはるかに超えている。
論文 参考訳(メタデータ) (2022-03-27T05:03:56Z) - InDuDoNet+: A Model-Driven Interpretable Dual Domain Network for Metal
Artifact Reduction in CT Images [53.4351366246531]
InDuDoNet+と呼ばれる新しい解釈可能な二重ドメインネットワークを構築し、CT画像の微細な埋め込みを行う。
異なる組織間のCT値を分析し,InDuDoNet+の事前観測ネットワークにマージすることで,その一般化性能を著しく向上させる。
論文 参考訳(メタデータ) (2021-12-23T15:52:37Z) - PnP-DETR: Towards Efficient Visual Analysis with Transformers [146.55679348493587]
近年、DeTRはトランスフォーマーを用いたソリューションビジョンタスクの先駆者であり、画像特徴マップを直接オブジェクト結果に変換する。
最近の変圧器を用いた画像認識モデルとTTは、一貫した効率向上を示す。
論文 参考訳(メタデータ) (2021-09-15T01:10:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。