Scalar Gravitational Aharonov-Bohm Effect: Generalization of the Gravitational Redshift
- URL: http://arxiv.org/abs/2408.14629v1
- Date: Mon, 26 Aug 2024 20:51:59 GMT
- Title: Scalar Gravitational Aharonov-Bohm Effect: Generalization of the Gravitational Redshift
- Authors: Michael E Tobar, Michael T Hatzon, Graeme R Flower, Maxim Goryachev,
- Abstract summary: The Aharonov-Bohm effect is a quantum mechanical phenomenon that demonstrates how potentials can have observable effects even when the classical fields associated with those potentials are absent.
Recent predictions suggest that temporal variations in the phase of an electron wave function will induce modulation sidebands in the energy levels of an atomic clock.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Aharonov-Bohm effect is a quantum mechanical phenomenon that demonstrates how potentials can have observable effects even when the classical fields associated with those potentials are absent. Initially proposed for electromagnetic interactions, this effect has been experimentally confirmed and extensively studied over the years. More recently, the effect has been observed in the context of gravitational interactions using atom interferometry. Additionally, recent predictions suggest that temporal variations in the phase of an electron wave function will induce modulation sidebands in the energy levels of an atomic clock, solely driven by a time-varying scalar gravitational potential [1]. In this study, we consider the atomic clock as a two-level system undergoing continuous Rabi oscillations between the electron's ground and excited state. We assume the photons driving the transition are precisely frequency-stabilized to match the transition, enabling accurate clock comparisons. Our analysis takes into account, that when an atom transitions from its ground state to an excited state, it absorbs energy, increasing its mass according to the mass-energy equivalence principle. Due to the mass difference between the two energy levels, we predict that an atomic clock in an eccentric orbit will exhibit a constant frequency shift relative to a ground clock corresponding to the orbit's average gravitational redshift, with additional modulation sidebands due to the time-varying gravitational potential.
Related papers
- Witnessing mass-energy equivalence with trapped atom interferometers [0.10686401485328585]
We propose an experimental setup to probe the interplay between the quantum superposition principle and the gravitational time dilation arising from the mass-energy equivalence.
It capitalizes on state-of-the-art atom interferometers that can keep atoms trapped in a superposition of heights in Earth's gravitational field for exceedingly long times reaching minute-scale.
arXiv Detail & Related papers (2024-06-27T09:43:05Z) - Quantum time dilation in a gravitational field [39.58317527488534]
We investigate how the superposition principle affects the gravitational time dilation observed by a simple clock.
We show that the emission rate of an atom prepared in a coherent superposition of separated wave packets in a gravitational field is different from the emission rate of an atom in a classical mixture of these packets.
arXiv Detail & Related papers (2022-04-22T10:02:21Z) - Self-oscillating pump in a topological dissipative atom-cavity system [55.41644538483948]
We report on an emergent mechanism for pumping in a quantum gas coupled to an optical resonator.
Due to dissipation, the cavity field evolves between its two quadratures, each corresponding to a different centrosymmetric crystal configuration.
This self-oscillation results in a time-periodic potential analogous to that describing the transport of electrons in topological tight-binding models.
arXiv Detail & Related papers (2021-12-21T19:57:30Z) - Limits on inference of gravitational entanglement [0.6876932834688035]
We study semi-classical models of the atom interferometer that can reproduce the same effect.
We show that the core signature -- periodic collapses and revivals of the visibility -- can appear if the atom is subject to a random unitary channel.
arXiv Detail & Related papers (2021-11-01T13:35:00Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Collective spontaneous emission of two entangled atoms near an
oscillating mirror [50.591267188664666]
We consider the cooperative spontaneous emission of a system of two identical atoms, interacting with the electromagnetic field in the vacuum state.
Using time-dependent theory, we investigate the spectrum of the radiation emitted by the two-atom system.
We show that it is modulated in time, and that the presence of the oscillating mirror can enhance or inhibit the decay rate.
arXiv Detail & Related papers (2020-10-07T06:48:20Z) - Gravitational waves affect vacuum entanglement [68.8204255655161]
The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
arXiv Detail & Related papers (2020-06-19T18:01:04Z) - Quantum time dilation in atomic spectra [62.997667081978825]
We demonstrate how quantum time dilation manifests in a spontaneous emission process.
The resulting emission rate differs when compared to the emission rate of an atom prepared in a mixture of momentum wave packets.
We argue that spectroscopic experiments offer a technologically feasible platform to explore the effects of quantum time dilation.
arXiv Detail & Related papers (2020-06-17T18:03:38Z) - Atom-interferometric test of the universality of gravitational redshift
and free fall [48.82541018696971]
Light-pulse atom interferometers constitute powerful quantum sensors for inertial forces.
We present a specific geometry which together with state transitions leads to a scheme that is sensitive to both violations of the universality of free fall and gravitational redshift.
arXiv Detail & Related papers (2020-01-27T13:35:30Z) - Driving Quantum Correlated Atom-Pairs from a Bose-Einstein Condensate [0.0]
We investigate one such control protocol that demonstrates the resonant amplification of quasimomentum pairs from a Bose-Einstein condensate.
A classical external field that excites pairs of particles with the same energy but opposite momenta is reminiscent of the coherently-driven nonlinearity in a parametric amplifier crystal.
arXiv Detail & Related papers (2020-01-08T00:11:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.