Gravitational waves affect vacuum entanglement
- URL: http://arxiv.org/abs/2006.11301v1
- Date: Fri, 19 Jun 2020 18:01:04 GMT
- Title: Gravitational waves affect vacuum entanglement
- Authors: Qidong Xu, Shadi Ali Ahmad, Alexander R. H. Smith
- Abstract summary: The entanglement harvesting protocol is an operational way to probe vacuum entanglement.
Using this protocol, it is demonstrated that while the transition probability of an individual atom is unaffected by the presence of a gravitational wave, the entanglement harvested by two atoms depends sensitively on the frequency of the gravitational wave.
This suggests that the entanglement signature left by a gravitational wave may be useful in characterizing its properties, and potentially useful in exploring the gravitational-wave memory effect and gravitational-wave induced decoherence.
- Score: 68.8204255655161
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The entanglement harvesting protocol is an operational way to probe vacuum
entanglement. This protocol relies on two atoms, modelled by Unruh-DeWitt
detectors, that are initially unentangled. These atoms then interact locally
with the field and become entangled. If the atoms remain spacelike separated,
any entanglement between them is a result of entanglement that is `harvested'
from the field. Thus, quantifying this entanglement serves as a proxy for how
entangled the field is across the regions in which the atoms interacted. Using
this protocol, it is demonstrated that while the transition probability of an
individual inertial atom is unaffected by the presence of a gravitational wave,
the entanglement harvested by two atoms depends sensitively on the frequency of
the gravitational wave, exhibiting novel resonance effects when the energy gap
of the detectors is tuned to the frequency of the gravitational wave. This
suggests that the entanglement signature left by a gravitational wave may be
useful in characterizing its properties, and potentially useful in exploring
the gravitational-wave memory effect and gravitational-wave induced
decoherence.
Related papers
- Scalar Gravitational Aharonov-Bohm Effect: Generalization of the Gravitational Redshift [0.0]
The Aharonov-Bohm effect is a quantum mechanical phenomenon that demonstrates how potentials can have observable effects even when the classical fields associated with those potentials are absent.
Recent predictions suggest that temporal variations in the phase of an electron wave function will induce modulation sidebands in the energy levels of an atomic clock.
arXiv Detail & Related papers (2024-08-26T20:51:59Z) - Quantum gravity signatures in gravitational wave detectors placed inside a harmonic trap potential [0.10713888959520207]
We consider a general gravitational wave detector of gravitational wave interacting with an incoming gravitational wave carrying plus polarization only placed inside a harmonic trap.
We observe a spontaneous emission of a single graviton which was completely absent in the semi-classical analouge of this model.
arXiv Detail & Related papers (2024-05-29T08:29:40Z) - Essential role of destructive interference in the gravitationally
induced entanglement [0.0]
The present paper analyzes the gravitationally induced entanglement as a pure interference effect.
The non-maximally entangled state can be extremely effective for experimental testing.
arXiv Detail & Related papers (2024-01-09T12:24:32Z) - Ultracold Neutrons in the Low Curvature Limit: Remarks on the
post-Newtonian effects [49.1574468325115]
We apply a perturbative scheme to derive the non-relativistic Schr"odinger equation in curved spacetime.
We calculate the next-to-leading order corrections to the neutron's energy spectrum.
While the current precision for observations of ultracold neutrons may not yet enable to probe them, they could still be relevant in the future or in alternative circumstances.
arXiv Detail & Related papers (2023-12-30T16:45:56Z) - Gravitational Harmonium: Gravitationally Induced Entanglement in a
Harmonic Trap [0.0]
We give a non-relativistic quantum mechanical analysis of the gravitationally induced entanglement of this system.
The present work serves as the basis for a subsequent investigation, which models this system using quantum field theory.
arXiv Detail & Related papers (2023-02-10T19:00:04Z) - Light propagation and atom interferometry in gravity and dilaton fields [58.80169804428422]
We study the modified propagation of light used to manipulate atoms in light-pulse atom interferometers.
Their interference signal is dominated by the matter's coupling to gravity and the dilaton.
We discuss effects from light propagation and the dilaton on different atom-interferometric setups.
arXiv Detail & Related papers (2022-01-18T15:26:19Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Gravitational Redshift Tests with Atomic Clocks and Atom Interferometers [55.4934126700962]
We characterize how the sensitivity to gravitational redshift violations arises in atomic clocks and atom interferometers.
We show that contributions beyond linear order to trapping potentials lead to such a sensitivity of trapped atomic clocks.
Guided atom interferometers are comparable to atomic clocks.
arXiv Detail & Related papers (2021-04-29T15:07:40Z) - Using an atom interferometer to infer gravitational entanglement
generation [0.0]
We introduce the concept of interactive quantum information sensing.
We show that this protocol is highly robust to typical thermal noise sources.
Preliminary numerical estimates suggest that near-term devices could feasibly be used to perform the experiment.
arXiv Detail & Related papers (2021-01-27T19:00:05Z) - Enhanced decoherence for a neutral particle sliding on a metallic
surface in vacuum [68.8204255655161]
We show that non-contact friction enhances the decoherence of the moving atom.
We suggest that measuring decoherence times through velocity dependence of coherences could indirectly demonstrate the existence of quantum friction.
arXiv Detail & Related papers (2020-11-06T17:34:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.