Bidirectional Emergent Language in Situated Environments
- URL: http://arxiv.org/abs/2408.14649v2
- Date: Thu, 17 Oct 2024 10:55:35 GMT
- Title: Bidirectional Emergent Language in Situated Environments
- Authors: Cornelius Wolff, Julius Mayer, Elia Bruni, Xenia Ohmer,
- Abstract summary: We introduce two novel cooperative environments: Multi-Agent Pong and Collectors.
optimal performance requires the emergence of a communication protocol, but moderate success can be achieved without one.
We find that the emerging communication is sparse, with the agents only generating meaningful messages and acting upon incoming messages in states where they cannot succeed without coordination.
- Score: 4.950411915351642
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Emergent language research has made significant progress in recent years, but still largely fails to explore how communication emerges in more complex and situated multi-agent systems. Existing setups often employ a reference game, which limits the range of language emergence phenomena that can be studied, as the game consists of a single, purely language-based interaction between the agents. In this paper, we address these limitations and explore the emergence and utility of token-based communication in open-ended multi-agent environments, where situated agents interact with the environment through movement and communication over multiple time-steps. Specifically, we introduce two novel cooperative environments: Multi-Agent Pong and Collectors. These environments are interesting because optimal performance requires the emergence of a communication protocol, but moderate success can be achieved without one. By employing various methods from explainable AI research, such as saliency maps, perturbation, and diagnostic classifiers, we are able to track and interpret the agents' language channel use over time. We find that the emerging communication is sparse, with the agents only generating meaningful messages and acting upon incoming messages in states where they cannot succeed without coordination.
Related papers
- Building Cooperative Embodied Agents Modularly with Large Language
Models [104.57849816689559]
We address challenging multi-agent cooperation problems with decentralized control, raw sensory observations, costly communication, and multi-objective tasks instantiated in various embodied environments.
We harness the commonsense knowledge, reasoning ability, language comprehension, and text generation prowess of LLMs and seamlessly incorporate them into a cognitive-inspired modular framework.
Our experiments on C-WAH and TDW-MAT demonstrate that CoELA driven by GPT-4 can surpass strong planning-based methods and exhibit emergent effective communication.
arXiv Detail & Related papers (2023-07-05T17:59:27Z) - CAMEL: Communicative Agents for "Mind" Exploration of Large Language
Model Society [58.04479313658851]
This paper explores the potential of building scalable techniques to facilitate autonomous cooperation among communicative agents.
We propose a novel communicative agent framework named role-playing.
Our contributions include introducing a novel communicative agent framework, offering a scalable approach for studying the cooperative behaviors and capabilities of multi-agent systems.
arXiv Detail & Related papers (2023-03-31T01:09:00Z) - On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
Social learning uses cues from experts to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks.
This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility.
arXiv Detail & Related papers (2023-02-28T03:23:27Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
It is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other.
Much research on communication emergence uses reinforcement learning (RL)
We explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate.
We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence.
arXiv Detail & Related papers (2022-11-02T21:08:14Z) - Multi-lingual agents through multi-headed neural networks [0.0]
This paper focuses on cooperative Multi-Agent Reinforcement Learning.
In this context, multiple distinct and incompatible languages can emerge.
We take inspiration from the Continual Learning literature and equip our agents with multi-headed neural networks which enable our agents to be multi-lingual.
arXiv Detail & Related papers (2021-11-22T11:39:42Z) - Learning to Ground Multi-Agent Communication with Autoencoders [43.22048280036316]
Communication requires a common language, a lingua franca, between agents.
We demonstrate a simple way to ground language in learned representations.
We find that a standard representation learning algorithm is sufficient for arriving at a grounded common language.
arXiv Detail & Related papers (2021-10-28T17:57:26Z) - Interpretation of Emergent Communication in Heterogeneous Collaborative
Embodied Agents [83.52684405389445]
We introduce the collaborative multi-object navigation task CoMON.
In this task, an oracle agent has detailed environment information in the form of a map.
It communicates with a navigator agent that perceives the environment visually and is tasked to find a sequence of goals.
We show that the emergent communication can be grounded to the agent observations and the spatial structure of the 3D environment.
arXiv Detail & Related papers (2021-10-12T06:56:11Z) - A Practical Guide to Studying Emergent Communication through Grounded
Language Games [0.0]
This paper introduces a high-level robot interface that extends the Babel software system.
It presents for the first time a toolkit that provides flexible modules for dealing with each subtask involved in running advanced grounded language game experiments.
arXiv Detail & Related papers (2020-04-20T11:48:24Z) - Learning to cooperate: Emergent communication in multi-agent navigation [49.11609702016523]
We show that agents performing a cooperative navigation task learn an interpretable communication protocol.
An analysis of the agents' policies reveals that emergent signals spatially cluster the state space.
Using populations of agents, we show that the emergent protocol has basic compositional structure.
arXiv Detail & Related papers (2020-04-02T16:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.