論文の概要: A Synthetic Benchmark to Explore Limitations of Localized Drift Detections
- arxiv url: http://arxiv.org/abs/2408.14687v1
- Date: Mon, 26 Aug 2024 23:24:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 15:24:16.432521
- Title: A Synthetic Benchmark to Explore Limitations of Localized Drift Detections
- Title(参考訳): 局所ドリフト検出限界探索のための合成ベンチマーク
- Authors: Flavio Giobergia, Eliana Pastor, Luca de Alfaro, Elena Baralis,
- Abstract要約: 概念ドリフトは、対象変数の統計的性質が時間とともに変化するデータストリームにおいて一般的な現象である。
本稿では,局所的ドリフトの概念を考察し,そのような局所的変化を特定するために,複数のドリフト検出技術の性能を評価する。
- 参考スコア(独自算出の注目度): 13.916984628784766
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Concept drift is a common phenomenon in data streams where the statistical properties of the target variable change over time. Traditionally, drift is assumed to occur globally, affecting the entire dataset uniformly. However, this assumption does not always hold true in real-world scenarios where only specific subpopulations within the data may experience drift. This paper explores the concept of localized drift and evaluates the performance of several drift detection techniques in identifying such localized changes. We introduce a synthetic dataset based on the Agrawal generator, where drift is induced in a randomly chosen subgroup. Our experiments demonstrate that commonly adopted drift detection methods may fail to detect drift when it is confined to a small subpopulation. We propose and test various drift detection approaches to quantify their effectiveness in this localized drift scenario. We make the source code for the generation of the synthetic benchmark available at https://github.com/fgiobergia/subgroup-agrawal-drift.
- Abstract(参考訳): 概念ドリフトは、対象変数の統計的性質が時間とともに変化するデータストリームにおいて一般的な現象である。
伝統的に、ドリフトは全世界で発生し、データセット全体に一様に影響を与えると仮定される。
しかし、この仮定は、データ内の特定のサブポピュレーションだけがドリフトを経験する現実世界のシナリオでは必ずしも当てはまらない。
本稿では,局所的ドリフトの概念を考察し,そのような局所的変化を特定するために,複数のドリフト検出技術の性能を評価する。
ランダムに選択されたサブグループでドリフトが誘導されるAgrawalジェネレータに基づく合成データセットを提案する。
本実験により, 小型個体群に制限された場合, ドリフト検出法はドリフト検出に失敗する可能性が示唆された。
本研究では,この局所的なドリフトシナリオにおけるドリフト検出手法の有効性を定量化するために,様々なドリフト検出手法を提案する。
合成ベンチマーク生成のソースコードはhttps://github.com/fgiobergia/subgroup-agrawal-drift.comで公開しています。
関連論文リスト
- Unsupervised Concept Drift Detection from Deep Learning Representations in Real-time [5.999777817331315]
コンセプト・ドリフト(英: Concept Drift)は、対象領域の基本的なデータ分布と統計的性質が時間とともに変化する現象である。
我々は、教師なしリアルタイム概念ドリフト検出フレームワークDriftLensを提案する。
深層学習表現の分布距離を利用して非構造化データに作用する。
論文 参考訳(メタデータ) (2024-06-24T23:41:46Z) - Drift Detection: Introducing Gaussian Split Detector [1.9430846345184412]
本稿では,バッチモードで動作する新しいドリフト検出器であるGaussian Split Detector (GSD)を紹介する。
GSDは、データが正規分布に従うときに機能し、決定境界の変化を監視するためにガウス混合モデルを使用するように設計されている。
我々の検出器は、実際のドリフトの検出や、誤報を避けるための鍵となる仮想ドリフトの無視において、技術の現状よりも優れていることを示す。
論文 参考訳(メタデータ) (2024-05-14T14:15:31Z) - Methods for Generating Drift in Text Streams [49.3179290313959]
コンセプトドリフトは、実世界のデータセットで頻繁に発生する現象であり、時間とともにデータ分布の変化に対応する。
本稿では,ラベル付きドリフトを用いたデータセット作成を容易にするための4つのテキストドリフト生成手法を提案する。
その結果、ドリフトの直後にすべてのメソッドのパフォーマンスが低下し、インクリメンタルなSVMは、以前のパフォーマンスレベルを実行し、回復するのに最も速いことを示している。
論文 参考訳(メタデータ) (2024-03-18T23:48:33Z) - A comprehensive analysis of concept drift locality in data streams [3.5897534810405403]
概念ドリフトは、進化するデータ特性への効果的なモデル適応のために検出されなければならない。
本稿では,その局所性とスケールに基づいて,概念ドリフトの新たな分類法を提案する。
我々は, 様々な難易度において, 9つの最先端ドリフト検出器の比較評価を行った。
論文 参考訳(メタデータ) (2023-11-10T20:57:43Z) - MomentDiff: Generative Video Moment Retrieval from Random to Real [71.40038773943638]
私たちは、MomentDiffという拡散に基づく生成フレームワークを提供しています。
MomentDiffは、ランダムなブラウジングから段階的なローカライゼーションまで、典型的な人間の検索プロセスをシミュレートする。
MomentDiffは3つの公開ベンチマークで最先端の手法を一貫して上回っていることを示す。
論文 参考訳(メタデータ) (2023-07-06T09:12:13Z) - CADM: Confusion Model-based Detection Method for Real-drift in Chunk
Data Stream [3.0885191226198785]
コンセプトドリフト検出は、健康モニタリングや故障診断といった現実の多くの応用において重要であることから、かなりの注目を集めている。
本稿では,概念的混乱に基づく限定アノテーションを用いて,チャンクデータストリーム内のリアルタイムドリフトを検出する手法を提案する。
論文 参考訳(メタデータ) (2023-03-25T08:59:27Z) - Divide and Contrast: Source-free Domain Adaptation via Adaptive
Contrastive Learning [122.62311703151215]
Divide and Contrast (DaC) は、それぞれの制限を回避しつつ、両方の世界の善良な端を接続することを目的としている。
DaCは、ターゲットデータをソースライクなサンプルとターゲット固有なサンプルに分割する。
さらに、ソースライクなドメインと、メモリバンクベースの最大平均離散性(MMD)損失を用いて、ターゲット固有のサンプルとを整合させて、分散ミスマッチを低減する。
論文 参考訳(メタデータ) (2022-11-12T09:21:49Z) - Change Detection for Local Explainability in Evolving Data Streams [72.4816340552763]
局所的特徴帰属法はポストホックやモデルに依存しない説明法として人気がある。
ローカルな属性が、ストリーミングやオンラインアプリケーションのような、現実的で絶えず変化する設定でどのように振る舞うかは、しばしば不明である。
局所変化と概念ドリフトを検出するフレキシブルでモデルに依存しないCDLEEDSを提案する。
論文 参考訳(メタデータ) (2022-09-06T18:38:34Z) - Delving into Sequential Patches for Deepfake Detection [64.19468088546743]
近年の顔偽造技術は、ほとんど追跡不可能なディープフェイクビデオを生み出しており、悪意のある意図で活用することができる。
従来の研究では、ディープフェイク法にまたがる一般化を追求する上で、局所的な低レベルな手がかりと時間的情報の重要性が指摘されてきた。
本稿では,局所的・時間的変換をベースとしたDeepfake Detectionフレームワークを提案する。
論文 参考訳(メタデータ) (2022-07-06T16:46:30Z) - Task-Sensitive Concept Drift Detector with Metric Learning [7.706795195017394]
提案手法は, 実測時に真のラベルにアクセスすることなくドリフトを検出することのできる, タスク依存型ドリフト検出フレームワークである。
ドリフトが分類性能に影響を与える実際のドリフトを検出し、仮想ドリフトを適切に無視することができる。
本稿では, 検出精度, 偽陽性率, 検出遅延の標準指標を1つの値に蓄積する新しい指標を用いて, 提案手法の性能評価を行う。
論文 参考訳(メタデータ) (2021-08-16T09:10:52Z) - Bayesian Autoencoders for Drift Detection in Industrial Environments [69.93875748095574]
オートエンコーダは、マルチセンサー環境で異常を検出するために使用される教師なしモデルである。
異常は、実際の環境の変化(実際のドリフト)や、故障した感覚デバイス(仮想ドリフト)から生じる。
論文 参考訳(メタデータ) (2021-07-28T10:19:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。