RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images
- URL: http://arxiv.org/abs/2408.14802v1
- Date: Tue, 27 Aug 2024 06:14:54 GMT
- Title: RAW-Adapter: Adapting Pre-trained Visual Model to Camera RAW Images
- Authors: Ziteng Cui, Tatsuya Harada,
- Abstract summary: We introduce RAW-Adapter, a novel approach aimed at adapting sRGB pre-trained models to camera RAW data.
Raw-Adapter comprises input-level adapters that employ learnable ISP stages to adjust RAW inputs, as well as model-level adapters to build connections between ISP stages and subsequent high-level networks.
- Score: 51.68432586065828
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: sRGB images are now the predominant choice for pre-training visual models in computer vision research, owing to their ease of acquisition and efficient storage. Meanwhile, the advantage of RAW images lies in their rich physical information under variable real-world challenging lighting conditions. For computer vision tasks directly based on camera RAW data, most existing studies adopt methods of integrating image signal processor (ISP) with backend networks, yet often overlook the interaction capabilities between the ISP stages and subsequent networks. Drawing inspiration from ongoing adapter research in NLP and CV areas, we introduce RAW-Adapter, a novel approach aimed at adapting sRGB pre-trained models to camera RAW data. RAW-Adapter comprises input-level adapters that employ learnable ISP stages to adjust RAW inputs, as well as model-level adapters to build connections between ISP stages and subsequent high-level networks. Additionally, RAW-Adapter is a general framework that could be used in various computer vision frameworks. Abundant experiments under different lighting conditions have shown our algorithm's state-of-the-art (SOTA) performance, demonstrating its effectiveness and efficiency across a range of real-world and synthetic datasets.
Related papers
- A Learnable Color Correction Matrix for RAW Reconstruction [19.394856071610604]
We introduce a learnable color correction matrix (CCM) to approximate the complex inverse image signal processor (ISP)
Experimental results demonstrate that simulated RAW (simRAW) images generated by our method provide performance improvements equivalent to those produced by more complex inverse ISP methods.
arXiv Detail & Related papers (2024-09-04T07:46:42Z) - Simple Image Signal Processing using Global Context Guidance [56.41827271721955]
Deep learning-based ISPs aim to transform RAW images into DSLR-like RGB images using deep neural networks.
We propose a novel module that can be integrated into any neural ISP to capture the global context information from the full RAW images.
Our model achieves state-of-the-art results on different benchmarks using diverse and real smartphone images.
arXiv Detail & Related papers (2024-04-17T17:11:47Z) - Rawformer: Unpaired Raw-to-Raw Translation for Learnable Camera ISPs [53.68932498994655]
This paper introduces a novel method for unpaired learning of raw-to-raw translation across diverse cameras.
It accurately maps raw images captured by a certain camera to the target camera, facilitating the generalization of learnable ISPs to new unseen cameras.
Our method demonstrates superior performance on real camera datasets, achieving higher accuracy compared to previous state-of-the-art techniques.
arXiv Detail & Related papers (2024-04-16T16:17:48Z) - Efficient Visual Computing with Camera RAW Snapshots [41.9863557302409]
Conventional cameras capture image irradiance on a sensor and convert it to RGB images using an image signal processor (ISP)
One can argue that since RAW images contain all the captured information, the conversion of RAW to RGB using an ISP is not necessary for visual computing.
We propose a novel $rho$-Vision framework to perform high-level semantic understanding and low-level compression using RAW images.
arXiv Detail & Related papers (2022-12-15T12:54:21Z) - Reversed Image Signal Processing and RAW Reconstruction. AIM 2022
Challenge Report [109.2135194765743]
This paper introduces the AIM 2022 Challenge on Reversed Image Signal Processing and RAW Reconstruction.
We aim to recover raw sensor images from the corresponding RGBs without metadata and, by doing this, "reverse" the ISP transformation.
arXiv Detail & Related papers (2022-10-20T10:43:53Z) - Enabling ISP-less Low-Power Computer Vision [4.102254385058941]
We release the raw version of a large-scale benchmark for generic high-level vision tasks.
For ISP-less CV systems, training on raw images result in a 7.1% increase in test accuracy.
We propose an energy-efficient form of analog in-pixel demosaicing that may be coupled with in-pixel CNN computations.
arXiv Detail & Related papers (2022-10-11T13:47:30Z) - Transform your Smartphone into a DSLR Camera: Learning the ISP in the
Wild [159.71025525493354]
We propose a trainable Image Signal Processing framework that produces DSLR quality images given RAW images captured by a smartphone.
To address the color misalignments between training image pairs, we employ a color-conditional ISP network and optimize a novel parametric color mapping between each input RAW and reference DSLR image.
arXiv Detail & Related papers (2022-03-20T20:13:59Z) - Model-Based Image Signal Processors via Learnable Dictionaries [6.766416093990318]
Digital cameras transform sensor RAW readings into RGB images by means of their Image Signal Processor (ISP)
Recent approaches have attempted to bridge this gap by estimating the RGB to RAW mapping.
We present a novel hybrid model-based and data-driven ISP that is both learnable and interpretable.
arXiv Detail & Related papers (2022-01-10T08:36:10Z) - Towards Low Light Enhancement with RAW Images [101.35754364753409]
We make the first benchmark effort to elaborate on the superiority of using RAW images in the low light enhancement.
We develop a new evaluation framework, Factorized Enhancement Model (FEM), which decomposes the properties of RAW images into measurable factors.
A RAW-guiding Exposure Enhancement Network (REENet) is developed, which makes trade-offs between the advantages and inaccessibility of RAW images in real applications.
arXiv Detail & Related papers (2021-12-28T07:27:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.