Distance-Forward Learning: Enhancing the Forward-Forward Algorithm Towards High-Performance On-Chip Learning
- URL: http://arxiv.org/abs/2408.14925v1
- Date: Tue, 27 Aug 2024 10:01:43 GMT
- Title: Distance-Forward Learning: Enhancing the Forward-Forward Algorithm Towards High-Performance On-Chip Learning
- Authors: Yujie Wu, Siyuan Xu, Jibin Wu, Lei Deng, Mingkun Xu, Qinghao Wen, Guoqi Li,
- Abstract summary: Forward-Forward (FF) algorithm was recently proposed as a local learning method to address the limitations of backpropagation (BP)
We reformulate FF using distance metric learning and propose a distance-forward algorithm (DF) to improve FF performance in supervised vision tasks.
Our method surpasses existing FF models and other advanced local learning approaches, with accuracies of 99.7% on MNIST, 88.2% on CIFAR-10, 59% on CIFAR-100, 95.9% on SVHN, and 82.5% on ImageNette.
- Score: 20.037634881772842
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: The Forward-Forward (FF) algorithm was recently proposed as a local learning method to address the limitations of backpropagation (BP), offering biological plausibility along with memory-efficient and highly parallelized computational benefits. However, it suffers from suboptimal performance and poor generalization, largely due to inadequate theoretical support and a lack of effective learning strategies. In this work, we reformulate FF using distance metric learning and propose a distance-forward algorithm (DF) to improve FF performance in supervised vision tasks while preserving its local computational properties, making it competitive for efficient on-chip learning. To achieve this, we reinterpret FF through the lens of centroid-based metric learning and develop a goodness-based N-pair margin loss to facilitate the learning of discriminative features. Furthermore, we integrate layer-collaboration local update strategies to reduce information loss caused by greedy local parameter updates. Our method surpasses existing FF models and other advanced local learning approaches, with accuracies of 99.7\% on MNIST, 88.2\% on CIFAR-10, 59\% on CIFAR-100, 95.9\% on SVHN, and 82.5\% on ImageNette, respectively. Moreover, it achieves comparable performance with less than 40\% memory cost compared to BP training, while exhibiting stronger robustness to multiple types of hardware-related noise, demonstrating its potential for online learning and energy-efficient computation on neuromorphic chips.
Related papers
- Self-Contrastive Forward-Forward Algorithm [3.1361717406527667]
We introduce the Self-Contrastive Forward-Forward (SCFF) method, inspired by self-supervised contrastive learning.
SCFF generates positive and negative examples applicable across different datasets.
It is the first to enable FF training of recurrent neural networks, opening the door to more complex tasks.
arXiv Detail & Related papers (2024-09-17T22:58:20Z) - FactorLLM: Factorizing Knowledge via Mixture of Experts for Large Language Models [50.331708897857574]
We introduce FactorLLM, a novel approach that decomposes well-trained dense FFNs into sparse sub-networks without requiring any further modifications.
FactorLLM achieves comparable performance to the source model securing up to 85% model performance while obtaining over a 30% increase in inference speed.
arXiv Detail & Related papers (2024-08-15T16:45:16Z) - Computation and Communication Efficient Lightweighting Vertical Federated Learning [4.742058918600289]
We introduce the concept of Lightweight Vertical Federated Learning (LVFL), targeting both computational and communication efficiencies.
This approach involves separate lightweighting strategies for the feature model, to improve computational efficiency, and for feature embedding, to enhance communication efficiency.
Our evaluation of the algorithm on a image classification dataset reveals that LVFL significantly alleviates computational and communication demands while preserving robust learning performance.
arXiv Detail & Related papers (2024-03-30T20:19:28Z) - Flashback: Understanding and Mitigating Forgetting in Federated Learning [7.248285042377168]
In Federated Learning (FL), forgetting, or the loss of knowledge across rounds, hampers algorithm convergence.
We introduce a metric to measure forgetting granularly, ensuring distinct recognition amid new knowledge acquisition.
We propose Flashback, an FL algorithm with a dynamic distillation approach that is used to regularize the local models, and effectively aggregate their knowledge.
arXiv Detail & Related papers (2024-02-08T10:52:37Z) - Convolutional Channel-wise Competitive Learning for the Forward-Forward
Algorithm [5.1246638322893245]
Forward-Forward (FF) algorithm has been proposed to alleviate the issues of backpropagation (BP) commonly used to train deep neural networks.
We take the main ideas of FF and improve them by leveraging channel-wise competitive learning in the context of convolutional neural networks for image classification tasks.
Our method outperforms recent FF-based models on image classification tasks, achieving testing errors of 0.58%, 7.69%, 21.89%, and 48.77% on MNIST, Fashion-MNIST, CIFAR-10 and CIFAR-100 respectively.
arXiv Detail & Related papers (2023-12-19T23:48:43Z) - Federated Learning of Large Language Models with Parameter-Efficient
Prompt Tuning and Adaptive Optimization [71.87335804334616]
Federated learning (FL) is a promising paradigm to enable collaborative model training with decentralized data.
The training process of Large Language Models (LLMs) generally incurs the update of significant parameters.
This paper proposes an efficient partial prompt tuning approach to improve performance and efficiency simultaneously.
arXiv Detail & Related papers (2023-10-23T16:37:59Z) - FedLALR: Client-Specific Adaptive Learning Rates Achieve Linear Speedup
for Non-IID Data [54.81695390763957]
Federated learning is an emerging distributed machine learning method.
We propose a heterogeneous local variant of AMSGrad, named FedLALR, in which each client adjusts its learning rate.
We show that our client-specified auto-tuned learning rate scheduling can converge and achieve linear speedup with respect to the number of clients.
arXiv Detail & Related papers (2023-09-18T12:35:05Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
We propose a new learning framework for neural networks, namely Cascaded Forward (CaFo) algorithm, which does not rely on BP optimization as that in FF.
Unlike FF, our framework directly outputs label distributions at each cascaded block, which does not require generation of additional negative samples.
In our framework each block can be trained independently, so it can be easily deployed into parallel acceleration systems.
arXiv Detail & Related papers (2023-03-17T02:01:11Z) - Improved Algorithms for Neural Active Learning [74.89097665112621]
We improve the theoretical and empirical performance of neural-network(NN)-based active learning algorithms for the non-parametric streaming setting.
We introduce two regret metrics by minimizing the population loss that are more suitable in active learning than the one used in state-of-the-art (SOTA) related work.
arXiv Detail & Related papers (2022-10-02T05:03:38Z) - Local Learning Matters: Rethinking Data Heterogeneity in Federated
Learning [61.488646649045215]
Federated learning (FL) is a promising strategy for performing privacy-preserving, distributed learning with a network of clients (i.e., edge devices)
arXiv Detail & Related papers (2021-11-28T19:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.