論文の概要: MegActor-$Σ$: Unlocking Flexible Mixed-Modal Control in Portrait Animation with Diffusion Transformer
- arxiv url: http://arxiv.org/abs/2408.14975v1
- Date: Tue, 27 Aug 2024 11:31:47 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 14:03:31.951974
- Title: MegActor-$Σ$: Unlocking Flexible Mixed-Modal Control in Portrait Animation with Diffusion Transformer
- Title(参考訳): MegActor-$$$:拡散変換器を用いたポートレートアニメーションにおけるフレキシブル混合モード制御
- Authors: Shurong Yang, Huadong Li, Juhao Wu, Minhao Jing, Linze Li, Renhe Ji, Jiajun Liang, Haoqiang Fan, Jin Wang,
- Abstract要約: MegActor-$Sigma$は混合モード条件拡散変換器(DiT)である
本稿では,視覚と音声の制御強度のバランスをとるためのモダリティ・デカップリング・コントロール(Modality Decoupling Control)のトレーニング戦略を提案する。
実験では、鮮明なポートレートアニメーションの生成における我々のアプローチの優位性を実証し、プライベートデータセットでトレーニングされた従来の手法よりも優れていた。
- 参考スコア(独自算出の注目度): 17.85194235185717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have demonstrated superior performance in the field of portrait animation. However, current approaches relied on either visual or audio modality to control character movements, failing to exploit the potential of mixed-modal control. This challenge arises from the difficulty in balancing the weak control strength of audio modality and the strong control strength of visual modality. To address this issue, we introduce MegActor-$\Sigma$: a mixed-modal conditional diffusion transformer (DiT), which can flexibly inject audio and visual modality control signals into portrait animation. Specifically, we make substantial advancements over its predecessor, MegActor, by leveraging the promising model structure of DiT and integrating audio and visual conditions through advanced modules within the DiT framework. To further achieve flexible combinations of mixed-modal control signals, we propose a ``Modality Decoupling Control" training strategy to balance the control strength between visual and audio modalities, along with the ``Amplitude Adjustment" inference strategy to freely regulate the motion amplitude of each modality. Finally, to facilitate extensive studies in this field, we design several dataset evaluation metrics to filter out public datasets and solely use this filtered dataset to train MegActor-$\Sigma$. Extensive experiments demonstrate the superiority of our approach in generating vivid portrait animations, outperforming previous methods trained on private dataset.
- Abstract(参考訳): 拡散モデルは、ポートレートアニメーションの分野で優れた性能を示している。
しかし、現在のアプローチは、文字の動きを制御するために視覚的あるいは音声的モダリティに依存しており、混合モーダル制御の可能性を生かしていない。
この課題は、オーディオモダリティの弱い制御強度と視覚モダリティの強い制御強度のバランスが難しいことから生じる。
この問題に対処するために,我々はMigActor-$\Sigma$: A Mixed-modal Conditional diffusion transformer (DiT)を紹介した。
具体的には、従来のMegActorよりも大幅に進歩し、DiTの有望なモデル構造を活用し、DiTフレームワーク内の高度なモジュールを通してオーディオと視覚条件を統合する。
混合モード制御信号のフレキシブルな組み合わせを実現するため,視覚とオーディオの両モード間の制御強度をバランスさせる「モードデカップリング制御」トレーニング戦略と,各モードの運動振幅を自由に調節する「振幅調整」推論戦略を提案する。
最後に、この分野での広範な研究を促進するために、公開データセットをフィルタリングし、このフィルタデータセットだけでMegActor-$\Sigma$をトレーニングするために、いくつかのデータセット評価メトリクスを設計する。
広範にわたる実験は、鮮明なポートレートアニメーションの生成における我々のアプローチの優位性を実証し、プライベートデータセットでトレーニングされた以前の方法よりも優れていた。
関連論文リスト
- MotionCraft: Crafting Whole-Body Motion with Plug-and-Play Multimodal Controls [30.487510829107908]
プラグ・アンド・プレイ・マルチモーダル制御による全身動作を実現する統合拡散変換器であるMotionCraftを提案する。
我々のフレームワークは、テキスト・ツー・モーション・セマンティック・トレーニングの第1段階から始まる粗大な訓練戦略を採用している。
本稿では,SMPL-Xフォーマットを統一したマルチモーダル全体モーション生成ベンチマークMC-Benchを紹介する。
論文 参考訳(メタデータ) (2024-07-30T18:57:06Z) - Bi-directional Adapter for Multi-modal Tracking [67.01179868400229]
汎用の双方向アダプタを用いたマルチモーダル視覚プロンプト追跡モデルを提案する。
我々は、モーダリティ固有の情報をあるモーダリティから別のモーダリティへ転送するための、シンプルだが効果的なライト・フィーチャー・アダプタを開発した。
本モデルでは,完全微調整法と素早い学習法の両方と比較して,追跡性能が優れている。
論文 参考訳(メタデータ) (2023-12-17T05:27:31Z) - Dynamic Weighted Combiner for Mixed-Modal Image Retrieval [8.683144453481328]
フレキシブル検索パラダイムとしてのMixed-Modal Image Retrieval (MMIR) が注目されている。
以前のアプローチは常に2つの重要な要因のため、限られたパフォーマンスを達成する。
以上の課題に対処するための動的重み付け結合器(DWC)を提案する。
論文 参考訳(メタデータ) (2023-12-11T07:36:45Z) - Fine-grained Controllable Video Generation via Object Appearance and
Context [74.23066823064575]
細粒度制御可能なビデオ生成法(FACTOR)を提案する。
FACTORは、オブジェクトの位置とカテゴリを含む、オブジェクトの外観とコンテキストを制御することを目的としている。
本手法は,オブジェクトの外観を微調整せずに制御し,オブジェクトごとの最適化作業を省く。
論文 参考訳(メタデータ) (2023-12-05T17:47:33Z) - DeNoising-MOT: Towards Multiple Object Tracking with Severe Occlusions [52.63323657077447]
DNMOTは、複数のオブジェクト追跡のためのエンドツーエンドのトレーニング可能なDeNoising Transformerである。
具体的には、トレーニング中にノイズを伴って軌道を拡大し、エンコーダ・デコーダアーキテクチャのデノイング過程をモデルに学習させる。
我々はMOT17,MOT20,DanceTrackのデータセットについて広範な実験を行い,実験結果から,提案手法が従来の最先端手法よりも明確なマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-09-09T04:40:01Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
本研究では,2つのモード間の分布ギャップを埋めるために,事前学習された視覚変換器(ViT)の潜在可能性を探る。
本研究では,いくつかのトークンの特定のモダリティをランダムにマスキングし,異なるモダリティのトークン間の相互作用を積極的に行うマスクモデリング戦略を提案する。
実験により,我々のプラグアンドプレイトレーニング強化技術は,追跡精度と成功率の両方の観点から,最先端のワンストリームと2つのトラッカーストリームを大幅に向上させることができることが示された。
論文 参考訳(メタデータ) (2023-07-09T08:58:47Z) - Cocktail: Mixing Multi-Modality Controls for Text-Conditional Image
Generation [79.8881514424969]
テキスト条件拡散モデルは多種多様な内容の高忠実度画像を生成することができる。
しかし、言語表現はしばしば、想定された目的像の曖昧な記述を示す。
様々なモダリティを1つの埋め込みに混ぜるパイプラインであるCocktailを提案する。
論文 参考訳(メタデータ) (2023-06-01T17:55:32Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
本稿では,顔のアンチ・スプーフィングのためのフレキシブル・モーダル・ビジョン・トランス (FM-ViT) と呼ばれる,純粋なトランスフォーマーベースのフレームワークを提案する。
FM-ViTは、利用可能なマルチモーダルデータの助けを借りて、任意の単一モーダル(すなわちRGB)攻撃シナリオを柔軟にターゲットすることができる。
実験により、FM-ViTに基づいてトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-05-05T04:28:48Z) - Modality-Aware Contrastive Instance Learning with Self-Distillation for
Weakly-Supervised Audio-Visual Violence Detection [14.779452690026144]
弱教師付き音声視覚学習のための自己蒸留(MACIL-SD)戦略を用いたモード認識型コントラスト学習を提案する。
我々のフレームワークは、大規模なXD-Violenceデータセットにおいて、より少ない複雑さで従来の手法より優れています。
論文 参考訳(メタデータ) (2022-07-12T12:42:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。