Exact Polaron-Polaron interactions in a Quantum Hall Fluid
- URL: http://arxiv.org/abs/2408.15007v1
- Date: Tue, 27 Aug 2024 12:43:03 GMT
- Title: Exact Polaron-Polaron interactions in a Quantum Hall Fluid
- Authors: Jia Wang, Xia-Ji Liu, Hui Hu,
- Abstract summary: Polaron interactions are exactly zero when fermions in lowest Landau levels outnumber heavy impurities.
We find that the potential vanishes when the distance R between impurities is larger than the magnetic length, but strongly diverges at short range following a Coulomb form -1/R.
Our predictions could also be useful to understand the effective interaction between exciton-polarons in electron-doped semiconductors under strong magnetic field.
- Score: 3.944954775892428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present an exact solution for effective polaron-polaron interactions between heavy impurities, mediated by a sea of non-interacting light fermions in the quantum Hall regime with highly degenerate Landau levels. For weak attraction between impurities and fermions, where only the manifold of lowest Landau levels is relevant, we obtain an analytical expression of mediated polaron-polaorn interactions. Remarkably, polaron interactions are exactly zero when fermions in lowest Landau levels outnumber heavy impurities. For strong attraction, different manifolds of higher Landau levels come into play and we derive a set of equations that can be used to numerically solve the mediated polaron interaction potential. We find that the potential vanishes when the distance R between impurities is larger than the magnetic length, but strongly diverges at short range following a Coulomb form -1/R. Our exact results of polaron-polaron interactions might be examined in cold-atom setups, where a system of Fermi polarons in the quantum Hall regime is realized with synthetic gauge field or under fast rotation. Our predictions could also be useful to understand the effective interaction between exciton-polarons in electron-doped semiconductors under strong magnetic field.
Related papers
- Fermi polaron in atom-ion hybrid systems [0.0]
We investigate the ionic Fermi polaron consisting of a charged impurity interacting with a polarized Fermi bath.
We find a smooth polaron-molecule transition for strong coupling, in contrast with the neutral case, where the transition smoothens only for finite temperature and finite impurity density.
This study may provide valuable insights into alternative solid-state systems such as Fermi excitons polarons in atomically thin semiconductors.
arXiv Detail & Related papers (2024-01-10T18:45:02Z) - The strongly driven Fermi polaron [49.81410781350196]
Quasiparticles are emergent excitations of matter that underlie much of our understanding of quantum many-body systems.
We take advantage of the clean setting of homogeneous quantum gases and fast radio-frequency control to manipulate Fermi polarons.
We measure the decay rate and the quasiparticle residue of the driven polaron from the Rabi oscillations between the two internal states.
arXiv Detail & Related papers (2023-08-10T17:59:51Z) - Mediated interactions between Fermi polarons and the role of impurity
quantum statistics [0.9599847639535126]
A prototypical example of a quasi-particle, a polaron, is an impurity strongly interacting with a surrounding medium.
We report the unambiguous observation of mediated interactions between Fermi polarons consisting of K impurities embedded in a Fermi sea of Li atoms.
arXiv Detail & Related papers (2023-05-08T17:50:56Z) - Cavity Induced Collective Behavior in the Polaritonic Ground State [0.0]
We investigate collective phenomena in a system of many particles in a harmonic trap coupled to a homogeneous quantum cavity field.
The cavity field mediates pairwise long-range interactions and enhances the effective mass of the particles.
The light-matter interaction also modifies the photonic properties of the polariton system, as the ground state is populated with bunched photons.
arXiv Detail & Related papers (2022-07-07T17:09:57Z) - Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions [1.9662978733004601]
We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
arXiv Detail & Related papers (2022-04-14T16:28:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Photon-mediated interactions near a Dirac photonic crystal slab [68.8204255655161]
We develop a theory of dipole radiation near photonic Dirac points in realistic structures.
We find positions where the nature of the collective interactions change from being coherent to dissipative ones.
Our results significantly improve the knowledge of Dirac light-matter interfaces.
arXiv Detail & Related papers (2021-07-01T14:21:49Z) - Extracting non-local inter-polaron interactions from collisional
dynamics [0.0]
This study develops a novel experimental method of deducing the profile of interaction induced between impurities in a trapped gas of ultracold Fermi/Bose atoms.
Numerical simulations of the quantum dynamics reveal the possibility to obtain information regarding the non-local induced interaction between two polarons.
arXiv Detail & Related papers (2020-11-16T12:56:55Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.