Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions
- URL: http://arxiv.org/abs/2204.07086v2
- Date: Wed, 27 Apr 2022 14:12:34 GMT
- Title: Quantum Hall states for Rydberg atoms with laser-assisted dipole-dipole
interactions
- Authors: Tian-Hua Yang, Bao-Zong Wang, Xin-Chi Zhou, Xiong-Jun Liu
- Abstract summary: We propose a novel scheme with laser-assisted dipole-dipole interactions to realize synthetic magnetic field for Rydberg atoms in a two-dimensional array configuration.
This work opens an avenue for the realization of the highly-sought-after bosonic topological orders using Rydberg atoms.
- Score: 1.9662978733004601
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Rydberg atoms with dipole-dipole interactions provide intriguing platforms to
explore exotic quantum many-body physics. Here we propose a novel scheme with
laser-assisted dipole-dipole interactions to realize synthetic magnetic field
for Rydberg atoms in a two-dimensional array configuration, which gives rise to
the exotic bosonic topological states. In the presence of an external effective
Zeeman splitting gradient, the dipole-dipole interaction between neighboring
Rydberg atoms along the gradient direction is suppressed, but can be assisted
when Raman lights are applied to compensate the energy difference. With this
scheme we generate a controllable uniform magnetic field for the complex
spin-exchange coupling model, which can be mapped to hard core bosons coupling
to an external synthetic magnetic field. The highly tunable flat Chern bands of
the hard core bosons are then obtained and moreover, the bosonic fractional
quantum Hall states can be achieved with experimental feasibility. This work
opens an avenue for the realization of the highly-sought-after bosonic
topological orders using Rydberg atoms.
Related papers
- Collectively enhanced ground-state cooling in subwavelength atomic arrays [0.0]
We present a sideband cooling scheme for atoms trapped in subwavelength arrays.
We derive an effective master equation for the atomic motion by adiabatically eliminating the internal degrees of freedom of the atoms.
This approach could be utilized for future quantum technologies based on dense ensembles of emitters.
arXiv Detail & Related papers (2024-05-28T18:00:05Z) - Quantum Optics with Rydberg Superatoms [0.49478969093606673]
Quantum optics based on Rydberg atoms is a powerful platform for light manipulation at the few-photon level.
We review the derivation of the collective coupling between a Rydberg superatom and a single light mode.
We briefly review applications of Rydberg superatoms to quantum optics such as single-photon generation and single-photon subtraction.
arXiv Detail & Related papers (2023-12-06T18:11:04Z) - Realization of an extremely anisotropic Heisenberg magnet in Rydberg
atom arrays [4.209816265441194]
We employ a Rydberg quantum simulator to experimentally demonstrate strongly correlated spin transport in anisotropic Heisenberg magnets.
In our approach, the motion of magnons is controlled by an induced spin-exchange interaction through Rydberg dressing.
As the most prominent signature of a giant anisotropy, we show that nearby Rydberg excitations form distinct types of magnon bound states.
arXiv Detail & Related papers (2023-07-10T04:52:52Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Bound state of distant photons in waveguide quantum electrodynamics [137.6408511310322]
Quantum correlations between distant particles remain enigmatic since the birth of quantum mechanics.
We predict a novel kind of bound quantum state in the simplest one-dimensional setup of two interacting particles in a box.
Such states could be realized in the waveguide quantum electrodynamics platform.
arXiv Detail & Related papers (2023-03-17T09:27:02Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Manipulating synthetic gauge fluxes via multicolor dressing of
Rydberg-atom arrays [12.153962518450202]
We show that optical Rydberg dressing with multicolor laser fields opens up distinct interaction channels.
A remarkable consequence of the interaction is the emergence of topologically protected long-range doublons.
arXiv Detail & Related papers (2022-03-08T10:47:39Z) - Cavity driven Rabi oscillations between Rydberg states of atoms trapped
on a superconducting atom chip [0.0]
Hybrid quantum systems involving cold atoms and microwave resonators can enable infinite-range interactions.
We report on the realization of coherent coupling of a Rydberg transition of ultracold atoms trapped on an integrated superconducting atom chip to the microwave field of an on-chip coplanar waveguide resonator.
arXiv Detail & Related papers (2021-05-11T16:43:07Z) - Quantum chaos driven by long-range waveguide-mediated interactions [125.99533416395765]
We study theoretically quantum states of a pair of photons interacting with a finite periodic array of two-level atoms in a waveguide.
Our calculation reveals two-polariton eigenstates that have a highly irregular wave-function in real space.
arXiv Detail & Related papers (2020-11-24T07:06:36Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.