論文の概要: Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection
- arxiv url: http://arxiv.org/abs/2408.15020v1
- Date: Tue, 27 Aug 2024 12:53:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:53:43.182452
- Title: Hierarchical Graph Interaction Transformer with Dynamic Token Clustering for Camouflaged Object Detection
- Title(参考訳): カモフラージュ物体検出のための動的トークンクラスタリングを用いた階層グラフ相互作用変換器
- Authors: Siyuan Yao, Hao Sun, Tian-Zhu Xiang, Xiao Wang, Xiaochun Cao,
- Abstract要約: 本稿では,HGINetと呼ばれる階層的なグラフ相互作用ネットワークを提案する。
このネットワークは、階層的トークン化機能間の効果的なグラフ相互作用を通じて、知覚不能なオブジェクトを発見することができる。
本実験は,既存の最先端手法と比較して,HGINetの優れた性能を示すものである。
- 参考スコア(独自算出の注目度): 57.883265488038134
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Camouflaged object detection (COD) aims to identify the objects that seamlessly blend into the surrounding backgrounds. Due to the intrinsic similarity between the camouflaged objects and the background region, it is extremely challenging to precisely distinguish the camouflaged objects by existing approaches. In this paper, we propose a hierarchical graph interaction network termed HGINet for camouflaged object detection, which is capable of discovering imperceptible objects via effective graph interaction among the hierarchical tokenized features. Specifically, we first design a region-aware token focusing attention (RTFA) with dynamic token clustering to excavate the potentially distinguishable tokens in the local region. Afterwards, a hierarchical graph interaction transformer (HGIT) is proposed to construct bi-directional aligned communication between hierarchical features in the latent interaction space for visual semantics enhancement. Furthermore, we propose a decoder network with confidence aggregated feature fusion (CAFF) modules, which progressively fuses the hierarchical interacted features to refine the local detail in ambiguous regions. Extensive experiments conducted on the prevalent datasets, i.e. COD10K, CAMO, NC4K and CHAMELEON demonstrate the superior performance of HGINet compared to existing state-of-the-art methods. Our code is available at https://github.com/Garyson1204/HGINet.
- Abstract(参考訳): カモフラージュされた物体検出(COD)は、周囲の背景にシームレスに溶け込む物体を特定することを目的としている。
カモフラージュされた物体と背景領域との固有の類似性のため、既存のアプローチでカモフラーグされた物体を正確に識別することは極めて困難である。
本稿では,HGINetと呼ばれる階層型グラフ相互作用ネットワークを提案する。
具体的には、まず、局所的に識別可能なトークンを発掘するために、動的トークンクラスタリングによる領域認識型トークンフォーカスアテンション(RTFA)を設計する。
その後,階層型グラフ相互作用変換器 (HGIT) が提案され,視覚的セマンティクス強化のための潜在相互作用空間における階層的特徴間の双方向な通信を構築する。
さらに,信頼集約型特徴融合(CAFF)モジュールを用いたデコーダネットワークを提案する。
一般的なデータセットであるCOD10K、CAMO、NC4K、CHAMELEONで実施された大規模な実験は、既存の最先端手法と比較して、HGINetの優れた性能を示している。
私たちのコードはhttps://github.com/Garyson1204/HGINetで利用可能です。
関連論文リスト
- ZoomNeXt: A Unified Collaborative Pyramid Network for Camouflaged Object Detection [70.11264880907652]
最近のオブジェクト(COD)は、現実のシナリオでは極めて複雑で難しい、視覚的にブレンドされたオブジェクトを周囲に分割しようと試みている。
本研究では,不明瞭な画像を観察したり,ズームインしたりアウトしたりする際の人間の行動を模倣する,効果的な統合協調ピラミッドネットワークを提案する。
我々のフレームワークは、画像とビデオのCODベンチマークにおいて、既存の最先端の手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-10-31T06:11:23Z) - Unveiling Camouflage: A Learnable Fourier-based Augmentation for
Camouflaged Object Detection and Instance Segmentation [27.41886911999097]
本稿では,camouflaged object detection (COD) とcamouflaged instance segmentation (CIS) の学習可能な拡張法を提案する。
提案手法は,カモフラージュされた対象検出器とカモフラーグされたインスタンスセグメンタの性能を大きなマージンで向上させる。
論文 参考訳(メタデータ) (2023-08-29T22:43:46Z) - Camouflaged Object Detection with Feature Grafting and Distractor Aware [9.791590363932519]
そこで我々は,Camouflaged Object Detectionタスクを処理するために,FDNet(Feature Grafting and Distractor Aware Network)を提案する。
具体的には、CNNとTransformerを使ってマルチスケール画像を並列にエンコードする。
Distractor Aware Moduleは、CODタスクで考えられる2つの障害を明示的にモデル化して、粗いカモフラージュマップを洗練させるように設計されている。
論文 参考訳(メタデータ) (2023-07-08T09:37:08Z) - Feature Shrinkage Pyramid for Camouflaged Object Detection with
Transformers [34.42710399235461]
視覚変換器は、最近、擬似的オブジェクト検出において、強いグローバルなコンテキストモデリング能力を示した。
ローカリティモデリングの効率の低下とデコーダの機能集約の不足という2つの大きな制限に悩まされている。
本研究では, 局所性向上した隣接する変圧器の特徴を階層的に復号化することを目的とした, 変圧器をベースとしたFSPNet(Feature Shrinkage Pyramid Network)を提案する。
論文 参考訳(メタデータ) (2023-03-26T20:50:58Z) - DQnet: Cross-Model Detail Querying for Camouflaged Object Detection [54.82390534024954]
カモフラージュされた物体検出のための畳み込みニューラルネットワーク(CNN)は、完全な対象範囲を無視しながら局所的な識別領域を活性化する傾向がある。
本稿では,CNNの内在的特性から部分的活性化が引き起こされることを論じる。
完全なオブジェクト範囲を活性化できる特徴マップを得るために,クロスモデル詳細クエリネットワーク(DQnet)と呼ばれる新しいフレームワークを提案する。
論文 参考訳(メタデータ) (2022-12-16T06:23:58Z) - Feature Aggregation and Propagation Network for Camouflaged Object
Detection [42.33180748293329]
カモフラージュされたオブジェクト検出(COD)は、環境に埋め込まれたカモフラージュされたオブジェクトを検出し、分離することを目的としている。
いくつかのCOD法が開発されているが, 前景オブジェクトと背景環境との固有の類似性により, 依然として不満足な性能に悩まされている。
カモフラージュされた物体検出のための新しい特徴集約・伝播ネットワーク(FAP-Net)を提案する。
論文 参考訳(メタデータ) (2022-12-02T05:54:28Z) - Learning Hierarchical Graph Representation for Image Manipulation
Detection [50.04902159383709]
画像操作検出の目的は、画像内の操作された領域を特定し、特定することである。
最近のアプローチでは、画像に残っている改ざんするアーティファクトをキャプチャするために、洗練された畳み込みニューラルネットワーク(CNN)が採用されている。
本稿では2つの並列分岐からなる階層型グラフ畳み込みネットワーク(HGCN-Net)を提案する。
論文 参考訳(メタデータ) (2022-01-15T01:54:25Z) - ConsNet: Learning Consistency Graph for Zero-Shot Human-Object
Interaction Detection [101.56529337489417]
画像中のHuman, Action, Object>の形のHOIインスタンスを検出・認識することを目的としたHuman-Object Interaction (HOI) Detectionの問題点を考察する。
我々は、オブジェクト、アクション、インタラクション間の多レベルコンパレンシーは、稀な、あるいは以前には見られなかったHOIのセマンティック表現を生成するための強力な手がかりであると主張している。
提案モデルでは,人-対象のペアの視覚的特徴とHOIラベルの単語埋め込みを入力とし,それらを視覚-意味的関節埋め込み空間にマッピングし,類似度を計測して検出結果を得る。
論文 参考訳(メタデータ) (2020-08-14T09:11:18Z) - A Graph-based Interactive Reasoning for Human-Object Interaction
Detection [71.50535113279551]
本稿では,HOIを推論するインタラクティブグラフ(Interactive Graph, in-Graph)という,グラフに基づくインタラクティブ推論モデルを提案する。
In-GraphNet と呼ばれる HOI を検出するための新しいフレームワークを構築した。
私たちのフレームワークはエンドツーエンドのトレーニングが可能で、人間のポーズのような高価なアノテーションはありません。
論文 参考訳(メタデータ) (2020-07-14T09:29:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。