MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
- URL: http://arxiv.org/abs/2408.15077v2
- Date: Wed, 28 Aug 2024 20:30:29 GMT
- Title: MMASD+: A Novel Dataset for Privacy-Preserving Behavior Analysis of Children with Autism Spectrum Disorder
- Authors: Pavan Uttej Ravva, Behdokht Kiafar, Pinar Kullu, Jicheng Li, Anjana Bhat, Roghayeh Leila Barmaki,
- Abstract summary: This work introduces MMASD+, an enhanced version of the novel open-source dataset called Multimodal ASD (MMASD)
MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data.
A Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD.
- Score: 1.6210252731619712
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Autism spectrum disorder (ASD) is characterized by significant challenges in social interaction and comprehending communication signals. Recently, therapeutic interventions for ASD have increasingly utilized Deep learning powered-computer vision techniques to monitor individual progress over time. These models are trained on private, non-public datasets from the autism community, creating challenges in comparing results across different models due to privacy-preserving data-sharing issues. This work introduces MMASD+, an enhanced version of the novel open-source dataset called Multimodal ASD (MMASD). MMASD+ consists of diverse data modalities, including 3D-Skeleton, 3D Body Mesh, and Optical Flow data. It integrates the capabilities of Yolov8 and Deep SORT algorithms to distinguish between the therapist and children, addressing a significant barrier in the original dataset. Additionally, a Multimodal Transformer framework is proposed to predict 11 action types and the presence of ASD. This framework achieves an accuracy of 95.03% for predicting action types and 96.42% for predicting ASD presence, demonstrating over a 10% improvement compared to models trained on single data modalities. These findings highlight the advantages of integrating multiple data modalities within the Multimodal Transformer framework.
Related papers
- Self-Supervised Pre-training Tasks for an fMRI Time-series Transformer in Autism Detection [3.665816629105171]
Autism Spectrum Disorder (ASD) is a neurodevelopmental condition that encompasses a wide variety of symptoms and degrees of impairment.
We have developed a transformer-based self-supervised framework that directly analyzes time-series fMRI data without computing functional connectivity.
We show that randomly masking entire ROIs gives better model performance than randomly masking time points in the pre-training step.
arXiv Detail & Related papers (2024-09-18T20:29:23Z) - Ensemble Modeling of Multiple Physical Indicators to Dynamically Phenotype Autism Spectrum Disorder [3.6630139570443996]
We provide a dataset for training computer vision models to detect Autism Spectrum Disorder (ASD)-related phenotypic markers.
We trained individual LSTM-based models using eye gaze, head positions, and facial landmarks as input features, achieving test AUCs of 86%, 67%, and 78%.
arXiv Detail & Related papers (2024-08-23T17:55:58Z) - MMA-DFER: MultiModal Adaptation of unimodal models for Dynamic Facial Expression Recognition in-the-wild [81.32127423981426]
Multimodal emotion recognition based on audio and video data is important for real-world applications.
Recent methods have focused on exploiting advances of self-supervised learning (SSL) for pre-training of strong multimodal encoders.
We propose a different perspective on the problem and investigate the advancement of multimodal DFER performance by adapting SSL-pre-trained disjoint unimodal encoders.
arXiv Detail & Related papers (2024-04-13T13:39:26Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - Copy Number Variation Informs fMRI-based Prediction of Autism Spectrum
Disorder [9.544191399458954]
We develop a more integrative model for combining genetic, demographic, and neuroimaging data.
Inspired by the influence of genotype on phenotype, we propose using an attention-based approach.
We evaluate the proposed approach on ASD classification and severity prediction tasks, using a sex-balanced dataset of 228 ASD.
arXiv Detail & Related papers (2023-08-08T19:53:43Z) - MMASD: A Multimodal Dataset for Autism Intervention Analysis [2.0731167087748994]
This work presents a novel privacy-preserving open-source dataset, MMASD as a MultiModal ASD benchmark dataset.
MMASD includes data from 32 children with ASD, and 1,315 data samples segmented from over 100 hours of intervention recordings.
MMASD aims to assist researchers and therapists in understanding children's cognitive status, monitoring their progress during therapy, and customizing the treatment plan accordingly.
arXiv Detail & Related papers (2023-06-14T05:04:11Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Domain Generalization with Adversarial Intensity Attack for Medical
Image Segmentation [27.49427483473792]
In real-world scenarios, it is common for models to encounter data from new and different domains to which they were not exposed to during training.
domain generalization (DG) is a promising direction as it enables models to handle data from previously unseen domains.
We introduce a novel DG method called Adversarial Intensity Attack (AdverIN), which leverages adversarial training to generate training data with an infinite number of styles.
arXiv Detail & Related papers (2023-04-05T19:40:51Z) - Inertial Hallucinations -- When Wearable Inertial Devices Start Seeing
Things [82.15959827765325]
We propose a novel approach to multimodal sensor fusion for Ambient Assisted Living (AAL)
We address two major shortcomings of standard multimodal approaches, limited area coverage and reduced reliability.
Our new framework fuses the concept of modality hallucination with triplet learning to train a model with different modalities to handle missing sensors at inference time.
arXiv Detail & Related papers (2022-07-14T10:04:18Z) - Fader Networks for domain adaptation on fMRI: ABIDE-II study [68.5481471934606]
We use 3D convolutional autoencoders to build the domain irrelevant latent space image representation and demonstrate this method to outperform existing approaches on ABIDE data.
arXiv Detail & Related papers (2020-10-14T16:50:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.