論文の概要: Relation Also Knows: Rethinking the Recall and Editing of Factual Associations in Auto-Regressive Transformer Language Models
- arxiv url: http://arxiv.org/abs/2408.15091v1
- Date: Tue, 27 Aug 2024 14:22:02 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 13:33:40.759544
- Title: Relation Also Knows: Rethinking the Recall and Editing of Factual Associations in Auto-Regressive Transformer Language Models
- Title(参考訳): 自己回帰変換言語モデルにおけるファクチュアルアソシエーションのリコールと編集の再考
- Authors: Xiyu Liu, Zhengxiao Liu, Naibin Gu, Zheng Lin, Wanli Ma, Ji Xiang, Weiping Wang,
- Abstract要約: 自己回帰変換言語モデル(LM)における事実関連の記憶とリコールが注目されている。
ほとんどの編集作業は、主に主題知識に焦点を当てた既存の知識リコールの解釈の指導の下で知識編集を行う。
本研究では,トランスフォーマーLMの知識リコールを推論中に解釈し,過度な一般化を避けるために知識編集に適用する,新たな関係性に着目した視点を見いだす。
- 参考スコア(独自算出の注目度): 15.698183471185066
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The storage and recall of factual associations in auto-regressive transformer language models (LMs) have drawn a great deal of attention, inspiring knowledge editing by directly modifying the located model weights. Most editing works achieve knowledge editing under the guidance of existing interpretations of knowledge recall that mainly focus on subject knowledge. However, these interpretations are seriously flawed, neglecting relation information and leading to the over-generalizing problem for editing. In this work, we discover a novel relation-focused perspective to interpret the knowledge recall of transformer LMs during inference and apply it on knowledge editing to avoid over-generalizing. Experimental results on the dataset supplemented with a new R-Specificity criterion demonstrate that our editing approach significantly alleviates over-generalizing while remaining competitive on other criteria, breaking the domination of subject-focused editing for future research.
- Abstract(参考訳): 自己回帰トランスフォーマー言語モデル(LM)における事実関連の記憶とリコールは、位置するモデルの重みを直接修正することによって知識編集を刺激し、多くの注目を集めている。
ほとんどの編集作業は、主に主題知識に焦点を当てた既存の知識リコールの解釈の指導の下で知識編集を行う。
しかし、これらの解釈は深刻な欠陥があり、関係情報を無視し、編集の過度に一般化する問題に繋がる。
本研究では,トランスフォーマーLMの知識リコールを推論中に解釈し,過度な一般化を避けるために知識編集に適用する,新たな関係性に着目した視点を見いだす。
新たなR-Specificity criterionを補足したデータセットの実験結果から,他の基準に照らしながら過剰な一般化を著しく軽減し,今後の研究における主観的編集の優位性を損なうことが明らかとなった。
関連論文リスト
- How Well Can Knowledge Edit Methods Edit Perplexing Knowledge? [18.022428746019582]
本研究では,「複雑度」の異なる知識を取り入れた知識編集手法の能力について検討する。
新たな知識の「複雑さ」と12シナリオの編集効率との間に有意な負の相関関係が認められた。
知識階層が編集結果に与える影響のさらなる調査は、より階層的な水準にある知識が、いくつかのシナリオにおいて変更することがより困難であることを示唆している。
論文 参考訳(メタデータ) (2024-06-25T03:41:02Z) - Editing the Mind of Giants: An In-Depth Exploration of Pitfalls of Knowledge Editing in Large Language Models [26.516571783335824]
近年の研究では、知識の歪みや一般的な能力の劣化など、編集後に現れた副作用が特定されている。
本調査では,これらの側面を包括的に研究し,大規模言語モデルにおける知識編集の課題を統一的に考察する。
論文 参考訳(メタデータ) (2024-06-03T15:28:21Z) - WISE: Rethinking the Knowledge Memory for Lifelong Model Editing of Large Language Models [78.22291694903659]
大規模言語モデル(LLM)は、成長を続ける世界の事実に適合し、幻覚的応答を修正するために知識更新を必要とする。
更新された知識が記憶にどこに存在するかは、モデル編集の基本的な問題である。
記憶のギャップを埋めるためにWISEを提案する。
論文 参考訳(メタデータ) (2024-05-23T16:35:52Z) - Robust and Scalable Model Editing for Large Language Models [75.95623066605259]
LLM編集のスケーラビリティと堅牢性を向上させるため,EREN(Reading Notesによる編集モデル)を提案する。
既存の技術とは異なり、複数の編集から知識を統合することができ、構文的に類似しているが意味的に無関係な入力に正しく反応する。
論文 参考訳(メタデータ) (2024-03-26T06:57:23Z) - Editing Conceptual Knowledge for Large Language Models [65.38231526537476]
本稿では,Large Language Models(LLMs)における概念知識の編集の先駆者となる。
本研究では,新しいベンチマークデータセットConceptEditを構築し,評価のための新しいメトリクスセットを確立する。
実験の結果,既存の編集手法は概念レベルの定義をある程度効率的に修正できるが,関連する瞬間的知識を歪ませる可能性も示された。
論文 参考訳(メタデータ) (2024-03-10T16:57:10Z) - EVEDIT: Event-based Knowledge Editing with Deductive Editing Boundaries [69.72012539060731]
大規模言語モデル(LLM)における効率的な知識編集(KE)の理論的枠組みを導入する。
本稿では,事象をイベント記述と組み合わせたイベントベースの知識編集タスクを提案する。
編集モデルにおける不確実性を解消するための既存の設定よりもイベントベースの編集の方が優れていることを実証的に示す。
論文 参考訳(メタデータ) (2024-02-17T16:34:50Z) - On the Robustness of Editing Large Language Models [57.477943944826904]
大型言語モデル(LLM)はコミュニケーションAIの構築において重要な役割を担っているが、効率的な更新の課題に直面している。
この研究は、編集方法の長所と短所を理解し、コミュニケーション型AIの実践的応用を促進することを目的としている。
論文 参考訳(メタデータ) (2024-02-08T17:06:45Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
大規模言語モデル(LLM)は、人間のコミュニケーションを忠実に反映したテキストの理解と生成の素晴らしい能力を示している。
本稿では,知識編集の問題を定義し,最先端アプローチの包括的レビューを行う。
我々は,代表的知識編集アプローチの総合的評価のための新しいベンチマークであるKnowEditを紹介した。
論文 参考訳(メタデータ) (2024-01-02T16:54:58Z) - Assessing Knowledge Editing in Language Models via Relation Perspective [21.64869056276927]
本稿では,関係に基づく知識編集に焦点を当てたRaKEという新しいベンチマークを構築した。
我々は,様々な知識編集ベースラインを含む総合的な実験を評価・実施するための,革新的な指標のセットを構築した。
本研究結果は,関係に関する知識がFFNネットワークだけでなく,注目層にも蓄積されていることを確認する。
論文 参考訳(メタデータ) (2023-11-15T15:44:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。