CLIP-AGIQA: Boosting the Performance of AI-Generated Image Quality Assessment with CLIP
- URL: http://arxiv.org/abs/2408.15098v1
- Date: Tue, 27 Aug 2024 14:30:36 GMT
- Title: CLIP-AGIQA: Boosting the Performance of AI-Generated Image Quality Assessment with CLIP
- Authors: Zhenchen Tang, Zichuan Wang, Bo Peng, Jing Dong,
- Abstract summary: We develop CLIP-AGIQA, a CLIP-based regression model for quality assessment of generated images.
We implement multi-category learnable prompts to fully utilize the textual knowledge in CLIP for quality assessment.
- Score: 5.983562693055378
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid development of generative technologies, AI-Generated Images (AIGIs) have been widely applied in various aspects of daily life. However, due to the immaturity of the technology, the quality of the generated images varies, so it is important to develop quality assessment techniques for the generated images. Although some models have been proposed to assess the quality of generated images, they are inadequate when faced with the ever-increasing and diverse categories of generated images. Consequently, the development of more advanced and effective models for evaluating the quality of generated images is urgently needed. Recent research has explored the significant potential of the visual language model CLIP in image quality assessment, finding that it performs well in evaluating the quality of natural images. However, its application to generated images has not been thoroughly investigated. In this paper, we build on this idea and further explore the potential of CLIP in evaluating the quality of generated images. We design CLIP-AGIQA, a CLIP-based regression model for quality assessment of generated images, leveraging rich visual and textual knowledge encapsulated in CLIP. Particularly, we implement multi-category learnable prompts to fully utilize the textual knowledge in CLIP for quality assessment. Extensive experiments on several generated image quality assessment benchmarks, including AGIQA-3K and AIGCIQA2023, demonstrate that CLIP-AGIQA outperforms existing IQA models, achieving excellent results in evaluating the quality of generated images.
Related papers
- Vision-Language Consistency Guided Multi-modal Prompt Learning for Blind AI Generated Image Quality Assessment [57.07360640784803]
We propose vision-language consistency guided multi-modal prompt learning for blind image quality assessment (AGIQA)
Specifically, we introduce learnable textual and visual prompts in language and vision branches of Contrastive Language-Image Pre-training (CLIP) models.
We design a text-to-image alignment quality prediction task, whose learned vision-language consistency knowledge is used to guide the optimization of the above multi-modal prompts.
arXiv Detail & Related papers (2024-06-24T13:45:31Z) - Understanding and Evaluating Human Preferences for AI Generated Images with Instruction Tuning [58.41087653543607]
We first establish a novel Image Quality Assessment (IQA) database for AIGIs, termed AIGCIQA2023+.
This paper presents a MINT-IQA model to evaluate and explain human preferences for AIGIs from Multi-perspectives with INstruction Tuning.
arXiv Detail & Related papers (2024-05-12T17:45:11Z) - PKU-AIGIQA-4K: A Perceptual Quality Assessment Database for Both Text-to-Image and Image-to-Image AI-Generated Images [1.5265677582796984]
We establish a large scale perceptual quality assessment database for both text-to-image and image-to-image AIGIs, named PKU-AIGIQA-4K.
We propose three image quality assessment (IQA) methods based on pre-trained models that include a no-reference method NR-AIGCIQA, a full-reference method FR-AIGCIQA, and a partial-reference method PR-AIGCIQA.
arXiv Detail & Related papers (2024-04-29T03:57:43Z) - AIGCOIQA2024: Perceptual Quality Assessment of AI Generated Omnidirectional Images [70.42666704072964]
We establish a large-scale AI generated omnidirectional image IQA database named AIGCOIQA2024.
A subjective IQA experiment is conducted to assess human visual preferences from three perspectives.
We conduct a benchmark experiment to evaluate the performance of state-of-the-art IQA models on our database.
arXiv Detail & Related papers (2024-04-01T10:08:23Z) - IQAGPT: Image Quality Assessment with Vision-language and ChatGPT Models [23.99102775778499]
This paper introduces IQAGPT, an innovative image quality assessment system integrating an image quality captioning VLM with ChatGPT.
We build a CT-IQA dataset for training and evaluation, comprising 1,000 CT slices with diverse quality levels professionally annotated.
To better leverage the capabilities of LLMs, we convert annotated quality scores into semantically rich text descriptions using a prompt template.
arXiv Detail & Related papers (2023-12-25T09:13:18Z) - PKU-I2IQA: An Image-to-Image Quality Assessment Database for AI
Generated Images [1.6031185986328562]
We establish a human perception-based image-to-image AIGCIQA database, named PKU-I2IQA.
We propose two benchmark models: NR-AIGCIQA based on the no-reference image quality assessment method and FR-AIGCIQA based on the full-reference image quality assessment method.
arXiv Detail & Related papers (2023-11-27T05:53:03Z) - Let's ViCE! Mimicking Human Cognitive Behavior in Image Generation
Evaluation [96.74302670358145]
We introduce an automated method for Visual Concept Evaluation (ViCE) to assess consistency between a generated/edited image and the corresponding prompt/instructions.
ViCE combines the strengths of Large Language Models (LLMs) and Visual Question Answering (VQA) into a unified pipeline, aiming to replicate the human cognitive process in quality assessment.
arXiv Detail & Related papers (2023-07-18T16:33:30Z) - Subjective and Objective Quality Assessment for in-the-Wild Computer
Graphics Images [57.02760260360728]
We build a large-scale in-the-wild CGIQA database consisting of 6,000 CGIs (CGIQA-6k)
We propose an effective deep learning-based no-reference (NR) IQA model by utilizing both distortion and aesthetic quality representation.
Experimental results show that the proposed method outperforms all other state-of-the-art NR IQA methods on the constructed CGIQA-6k database.
arXiv Detail & Related papers (2023-03-14T16:32:24Z) - Conformer and Blind Noisy Students for Improved Image Quality Assessment [80.57006406834466]
Learning-based approaches for perceptual image quality assessment (IQA) usually require both the distorted and reference image for measuring the perceptual quality accurately.
In this work, we explore the performance of transformer-based full-reference IQA models.
We also propose a method for IQA based on semi-supervised knowledge distillation from full-reference teacher models into blind student models.
arXiv Detail & Related papers (2022-04-27T10:21:08Z) - A survey on IQA [0.0]
This article will review the concepts and metrics of image quality assessment and also video quality assessment.
It briefly introduce some methods of full-reference and semi-reference image quality assessment, and focus on the non-reference image quality assessment methods based on deep learning.
arXiv Detail & Related papers (2021-08-29T10:52:27Z) - GIQA: Generated Image Quality Assessment [36.01759301994946]
Generative adversarial networks (GANs) have achieved impressive results today, but not all generated images are perfect.
We propose Generated Image Quality Assessment (GIQA), which quantitatively evaluates the quality of each generated image.
arXiv Detail & Related papers (2020-03-19T17:56:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.