Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach
- URL: http://arxiv.org/abs/2408.15103v2
- Date: Sun, 20 Oct 2024 15:05:44 GMT
- Title: Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach
- Authors: Valfride Nascimento, Rayson Laroca, Rafael O. Ribeiro, William Robson Schwartz, David Menotti,
- Abstract summary: We introduce a novel loss function, Layout and Character Oriented Focal Loss (LCOFL), which considers factors such as resolution, texture, and structural details, as well as the performance of the LPR task itself.
We enhance character feature learning using deformable convolutions and shared weights in an attention module and employ a GAN-based training approach with an Optical Character Recognition (OCR) model as the discriminator.
Our experimental results show significant improvements in character reconstruction quality, outperforming two state-of-the-art methods in both quantitative and qualitative measures.
- Score: 2.9628782269544685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite significant advancements in License Plate Recognition (LPR) through deep learning, most improvements rely on high-resolution images with clear characters. This scenario does not reflect real-world conditions where traffic surveillance often captures low-resolution and blurry images. Under these conditions, characters tend to blend with the background or neighboring characters, making accurate LPR challenging. To address this issue, we introduce a novel loss function, Layout and Character Oriented Focal Loss (LCOFL), which considers factors such as resolution, texture, and structural details, as well as the performance of the LPR task itself. We enhance character feature learning using deformable convolutions and shared weights in an attention module and employ a GAN-based training approach with an Optical Character Recognition (OCR) model as the discriminator to guide the super-resolution process. Our experimental results show significant improvements in character reconstruction quality, outperforming two state-of-the-art methods in both quantitative and qualitative measures. Our code is publicly available at https://github.com/valfride/lpsr-lacd
Related papers
- CoSeR: Bridging Image and Language for Cognitive Super-Resolution [74.24752388179992]
We introduce the Cognitive Super-Resolution (CoSeR) framework, empowering SR models with the capacity to comprehend low-resolution images.
We achieve this by marrying image appearance and language understanding to generate a cognitive embedding.
To further improve image fidelity, we propose a novel condition injection scheme called "All-in-Attention"
arXiv Detail & Related papers (2023-11-27T16:33:29Z) - One-stage Low-resolution Text Recognition with High-resolution Knowledge
Transfer [53.02254290682613]
Current solutions for low-resolution text recognition typically rely on a two-stage pipeline.
We propose an efficient and effective knowledge distillation framework to achieve multi-level knowledge transfer.
Experiments show that the proposed one-stage pipeline significantly outperforms super-resolution based two-stage frameworks.
arXiv Detail & Related papers (2023-08-05T02:33:45Z) - Super-Resolution of License Plate Images Using Attention Modules and
Sub-Pixel Convolution Layers [3.8831062015253055]
We introduce a Single-Image Super-Resolution (SISR) approach to enhance the detection of structural and textural features in surveillance images.
Our approach incorporates sub-pixel convolution layers and a loss function that uses an Optical Character Recognition (OCR) model for feature extraction.
Our results show that our approach for reconstructing these low-resolution synthesized images outperforms existing ones in both quantitative and qualitative measures.
arXiv Detail & Related papers (2023-05-27T00:17:19Z) - CRC-RL: A Novel Visual Feature Representation Architecture for
Unsupervised Reinforcement Learning [7.4010632660248765]
A novel architecture is proposed that uses a heterogeneous loss function, called CRC loss, to learn improved visual features.
The proposed architecture, called CRC-RL, is shown to outperform the existing state-of-the-art methods on the challenging Deep mind control suite environments.
arXiv Detail & Related papers (2023-01-31T08:41:18Z) - Combining Attention Module and Pixel Shuffle for License Plate
Super-Resolution [3.8831062015253055]
This work focuses on license plate (LP) reconstruction in low-resolution and low-quality images.
We present a Single-Image Super-Resolution (SISR) approach that extends the attention/transformer module concept.
In our experiments, the proposed method outperformed the baselines both quantitatively and qualitatively.
arXiv Detail & Related papers (2022-10-30T13:05:07Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z) - Interpretable Detail-Fidelity Attention Network for Single Image
Super-Resolution [89.1947690981471]
We propose a purposeful and interpretable detail-fidelity attention network to progressively process smoothes and details in divide-and-conquer manner.
Particularly, we propose a Hessian filtering for interpretable feature representation which is high-profile for detail inference.
Experiments demonstrate that the proposed methods achieve superior performances over the state-of-the-art methods.
arXiv Detail & Related papers (2020-09-28T08:31:23Z) - Characteristic Regularisation for Super-Resolving Face Images [81.84939112201377]
Existing facial image super-resolution (SR) methods focus mostly on improving artificially down-sampled low-resolution (LR) imagery.
Previous unsupervised domain adaptation (UDA) methods address this issue by training a model using unpaired genuine LR and HR data.
This renders the model overstretched with two tasks: consistifying the visual characteristics and enhancing the image resolution.
We formulate a method that joins the advantages of conventional SR and UDA models.
arXiv Detail & Related papers (2019-12-30T16:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.