Embedding Similarity Guided License Plate Super Resolution
- URL: http://arxiv.org/abs/2501.01483v2
- Date: Wed, 08 Jan 2025 14:29:10 GMT
- Title: Embedding Similarity Guided License Plate Super Resolution
- Authors: Abderrezzaq Sendjasni, Mohamed-Chaker Larabi,
- Abstract summary: This study proposes a novel framework that combines pixel-based loss with embedding similarity learning to address the challenges of license plate super-resolution (LPSR)
The introduced pixel and embedding consistency loss (PECL) integrates a Siamese network and applies contrastive loss to force embedding similarities to improve perceptual and structural fidelity.
- Score: 4.315486098289241
- License:
- Abstract: Super-resolution (SR) techniques play a pivotal role in enhancing the quality of low-resolution images, particularly for applications such as security and surveillance, where accurate license plate recognition is crucial. This study proposes a novel framework that combines pixel-based loss with embedding similarity learning to address the unique challenges of license plate super-resolution (LPSR). The introduced pixel and embedding consistency loss (PECL) integrates a Siamese network and applies contrastive loss to force embedding similarities to improve perceptual and structural fidelity. By effectively balancing pixel-wise accuracy with embedding-level consistency, the framework achieves superior alignment of fine-grained features between high-resolution (HR) and super-resolved (SR) license plates. Extensive experiments on the CCPD dataset validate the efficacy of the proposed framework, demonstrating consistent improvements over state-of-the-art methods in terms of PSNR_RGB, PSNR_Y and optical character recognition (OCR) accuracy. These results highlight the potential of embedding similarity learning to advance both perceptual quality and task-specific performance in extreme super-resolution scenarios.
Related papers
- Content-decoupled Contrastive Learning-based Implicit Degradation Modeling for Blind Image Super-Resolution [33.16889233975723]
Implicit degradation modeling-based blind super-resolution (SR) has attracted more increasing attention in the community.
We propose a new Content-decoupled Contrastive Learning-based blind image super-resolution (CdCL) framework.
arXiv Detail & Related papers (2024-08-10T04:51:43Z) - Exploiting Self-Supervised Constraints in Image Super-Resolution [72.35265021054471]
This paper introduces a novel self-supervised constraint for single image super-resolution, termed SSC-SR.
SSC-SR uniquely addresses the divergence in image complexity by employing a dual asymmetric paradigm and a target model updated via exponential moving average to enhance stability.
Empirical evaluations reveal that our SSC-SR framework delivers substantial enhancements on a variety of benchmark datasets, achieving an average increase of 0.1 dB over EDSR and 0.06 dB over SwinIR.
arXiv Detail & Related papers (2024-03-30T06:18:50Z) - RBSR: Efficient and Flexible Recurrent Network for Burst
Super-Resolution [57.98314517861539]
Burst super-resolution (BurstSR) aims at reconstructing a high-resolution (HR) image from a sequence of low-resolution (LR) and noisy images.
In this paper, we suggest fusing cues frame-by-frame with an efficient and flexible recurrent network.
arXiv Detail & Related papers (2023-06-30T12:14:13Z) - Learning from Multi-Perception Features for Real-Word Image
Super-resolution [87.71135803794519]
We propose a novel SR method called MPF-Net that leverages multiple perceptual features of input images.
Our method incorporates a Multi-Perception Feature Extraction (MPFE) module to extract diverse perceptual information.
We also introduce a contrastive regularization term (CR) that improves the model's learning capability.
arXiv Detail & Related papers (2023-05-26T07:35:49Z) - DCS-RISR: Dynamic Channel Splitting for Efficient Real-world Image
Super-Resolution [15.694407977871341]
Real-world image super-resolution (RISR) has received increased focus for improving the quality of SR images under unknown complex degradation.
Existing methods rely on the heavy SR models to enhance low-resolution (LR) images of different degradation levels.
We propose a novel Dynamic Channel Splitting scheme for efficient Real-world Image Super-Resolution, termed DCS-RISR.
arXiv Detail & Related papers (2022-12-15T04:34:57Z) - Bridging Component Learning with Degradation Modelling for Blind Image
Super-Resolution [69.11604249813304]
We propose a components decomposition and co-optimization network (CDCN) for blind SR.
CDCN decomposes the input LR image into structure and detail components in feature space.
We present a degradation-driven learning strategy to jointly supervise the HR image detail and structure restoration process.
arXiv Detail & Related papers (2022-12-03T14:53:56Z) - Joint Learning Content and Degradation Aware Feature for Blind
Super-Resolution [37.99541178081113]
A Content and Degradation SR Network dubbed CDSR is proposed.
The proposed CDSR outperforms the existing UDP models and achieves competitive performance on PSNR and SSIM.
arXiv Detail & Related papers (2022-08-29T09:12:39Z) - Hierarchical Similarity Learning for Aliasing Suppression Image
Super-Resolution [64.15915577164894]
A hierarchical image super-resolution network (HSRNet) is proposed to suppress the influence of aliasing.
HSRNet achieves better quantitative and visual performance than other works, and remits the aliasing more effectively.
arXiv Detail & Related papers (2022-06-07T14:55:32Z) - Hierarchical Deep CNN Feature Set-Based Representation Learning for
Robust Cross-Resolution Face Recognition [59.29808528182607]
Cross-resolution face recognition (CRFR) is important in intelligent surveillance and biometric forensics.
Existing shallow learning-based and deep learning-based methods focus on mapping the HR-LR face pairs into a joint feature space.
In this study, we desire to fully exploit the multi-level deep convolutional neural network (CNN) feature set for robust CRFR.
arXiv Detail & Related papers (2021-03-25T14:03:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.