Using LLMs for Explaining Sets of Counterfactual Examples to Final Users
- URL: http://arxiv.org/abs/2408.15133v1
- Date: Tue, 27 Aug 2024 15:13:06 GMT
- Title: Using LLMs for Explaining Sets of Counterfactual Examples to Final Users
- Authors: Arturo Fredes, Jordi Vitria,
- Abstract summary: In automated decision-making scenarios, causal inference methods can analyze the underlying data-generation process.
Counterfactual examples explore hypothetical scenarios where a minimal number of factors are altered.
We propose a novel multi-step pipeline that uses counterfactuals to generate natural language explanations of actions that will lead to a change in outcome.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Causality is vital for understanding true cause-and-effect relationships between variables within predictive models, rather than relying on mere correlations, making it highly relevant in the field of Explainable AI. In an automated decision-making scenario, causal inference methods can analyze the underlying data-generation process, enabling explanations of a model's decision by manipulating features and creating counterfactual examples. These counterfactuals explore hypothetical scenarios where a minimal number of factors are altered, providing end-users with valuable information on how to change their situation. However, interpreting a set of multiple counterfactuals can be challenging for end-users who are not used to analyzing raw data records. In our work, we propose a novel multi-step pipeline that uses counterfactuals to generate natural language explanations of actions that will lead to a change in outcome in classifiers of tabular data using LLMs. This pipeline is designed to guide the LLM through smaller tasks that mimic human reasoning when explaining a decision based on counterfactual cases. We conducted various experiments using a public dataset and proposed a method of closed-loop evaluation to assess the coherence of the final explanation with the counterfactuals, as well as the quality of the content. Results are promising, although further experiments with other datasets and human evaluations should be carried out.
Related papers
- Likelihood as a Performance Gauge for Retrieval-Augmented Generation [78.28197013467157]
We show that likelihoods serve as an effective gauge for language model performance.
We propose two methods that use question likelihood as a gauge for selecting and constructing prompts that lead to better performance.
arXiv Detail & Related papers (2024-11-12T13:14:09Z) - CLOMO: Counterfactual Logical Modification with Large Language Models [109.60793869938534]
We introduce a novel task, Counterfactual Logical Modification (CLOMO), and a high-quality human-annotated benchmark.
In this task, LLMs must adeptly alter a given argumentative text to uphold a predetermined logical relationship.
We propose an innovative evaluation metric, the Self-Evaluation Score (SES), to directly evaluate the natural language output of LLMs.
arXiv Detail & Related papers (2023-11-29T08:29:54Z) - Mind the instructions: a holistic evaluation of consistency and
interactions in prompt-based learning [14.569770617709073]
We present a detailed analysis of which design choices cause instabilities and inconsistencies in task predictions.
We show how spurious correlations between input distributions and labels form only a minor problem for prompted models.
We statistically analyse the results to show which factors are the most influential, interactive or stable.
arXiv Detail & Related papers (2023-10-20T13:25:24Z) - Bring Your Own Data! Self-Supervised Evaluation for Large Language
Models [52.15056231665816]
We propose a framework for self-supervised evaluation of Large Language Models (LLMs)
We demonstrate self-supervised evaluation strategies for measuring closed-book knowledge, toxicity, and long-range context dependence.
We find strong correlations between self-supervised and human-supervised evaluations.
arXiv Detail & Related papers (2023-06-23T17:59:09Z) - Counterfactuals of Counterfactuals: a back-translation-inspired approach
to analyse counterfactual editors [3.4253416336476246]
We focus on the analysis of counterfactual, contrastive explanations.
We propose a new back translation-inspired evaluation methodology.
We show that by iteratively feeding the counterfactual to the explainer we can obtain valuable insights into the behaviour of both the predictor and the explainer models.
arXiv Detail & Related papers (2023-05-26T16:04:28Z) - A Mechanistic Interpretation of Arithmetic Reasoning in Language Models
using Causal Mediation Analysis [128.0532113800092]
We present a mechanistic interpretation of Transformer-based LMs on arithmetic questions.
This provides insights into how information related to arithmetic is processed by LMs.
arXiv Detail & Related papers (2023-05-24T11:43:47Z) - On the Importance of Application-Grounded Experimental Design for
Evaluating Explainable ML Methods [20.2027063607352]
We present an experimental study extending a prior explainable ML evaluation experiment and bringing the setup closer to the deployment setting.
Our empirical study draws dramatically different conclusions than the prior work, highlighting how seemingly trivial experimental design choices can yield misleading results.
We believe this work holds lessons about the necessity of situating the evaluation of any ML method and choosing appropriate tasks, data, users, and metrics to match the intended deployment contexts.
arXiv Detail & Related papers (2022-06-24T14:46:19Z) - Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Causality-based Counterfactual Explanation for Classification Models [11.108866104714627]
We propose a prototype-based counterfactual explanation framework (ProCE)
ProCE is capable of preserving the causal relationship underlying the features of the counterfactual data.
In addition, we design a novel gradient-free optimization based on the multi-objective genetic algorithm that generates the counterfactual explanations.
arXiv Detail & Related papers (2021-05-03T09:25:59Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.