論文の概要: Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation
- arxiv url: http://arxiv.org/abs/2408.15239v1
- Date: Tue, 27 Aug 2024 17:57:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-28 12:53:10.584389
- Title: Generative Inbetweening: Adapting Image-to-Video Models for Keyframe Interpolation
- Title(参考訳): Generative Inbetweening:キーフレーム補間のための画像と映像のモデルへの適応
- Authors: Xiaojuan Wang, Boyang Zhou, Brian Curless, Ira Kemelmacher-Shlizerman, Aleksander Holynski, Steven M. Seitz,
- Abstract要約: 本稿では,一対の入力キーフレーム間のコヒーレントな動きで映像列を生成する手法を提案する。
実験の結果,本手法は既存の拡散法と従来のフレーム技術の両方に優れることがわかった。
- 参考スコア(独自算出の注目度): 60.27691946892796
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a method for generating video sequences with coherent motion between a pair of input key frames. We adapt a pretrained large-scale image-to-video diffusion model (originally trained to generate videos moving forward in time from a single input image) for key frame interpolation, i.e., to produce a video in between two input frames. We accomplish this adaptation through a lightweight fine-tuning technique that produces a version of the model that instead predicts videos moving backwards in time from a single input image. This model (along with the original forward-moving model) is subsequently used in a dual-directional diffusion sampling process that combines the overlapping model estimates starting from each of the two keyframes. Our experiments show that our method outperforms both existing diffusion-based methods and traditional frame interpolation techniques.
- Abstract(参考訳): 本稿では,一対の入力キーフレーム間のコヒーレントな動きを伴う映像系列を生成する手法を提案する。
我々は、キーフレーム補間、すなわち2つの入力フレーム間でビデオを生成するために、事前訓練された大規模画像間拡散モデル(元々は、1つの入力画像から時間的に動画を転送するように訓練された)を適用した。
この適応を軽量な微調整技術により実現し、代わりに単一の入力画像からビデオが後方に移動することを予測するモデルのバージョンを生成する。
このモデル(元の前方移動モデルとともに)は、その後、2つのキーフレームから始まる重なり合うモデル推定を組み合わせた双方向拡散サンプリングプロセスで使用される。
実験により,本手法は既存の拡散法と従来のフレーム補間法の両方に優れることがわかった。
関連論文リスト
- ViBiDSampler: Enhancing Video Interpolation Using Bidirectional Diffusion Sampler [53.98558445900626]
現在の画像とビデオの拡散モデルは、単一のフレームからビデオを生成するのに強力だが、2フレーム条件付き生成に適応する必要がある。
我々は,これらのオフマンド問題に対処するために,広範囲な再ノイズや微調整を必要とせずに,新しい双方向サンプリング戦略を導入する。
提案手法では,それぞれ開始フレームと終了フレームに条件付き前方経路と後方経路の両方に沿って逐次サンプリングを行い,中間フレームの整合性を確保した。
論文 参考訳(メタデータ) (2024-10-08T03:01:54Z) - Disentangled Motion Modeling for Video Frame Interpolation [40.83962594702387]
ビデオフレーム(VFI)は、既存のフレーム間の中間フレームを合成し、視覚的滑らかさと品質を高めることを目的としている。
中間動作モデリングに着目して視覚的品質を高めるVFIの拡散に基づく手法であるDistangled Motion Modeling (MoMo)を導入する。
論文 参考訳(メタデータ) (2024-06-25T03:50:20Z) - ZeroSmooth: Training-free Diffuser Adaptation for High Frame Rate Video Generation [81.90265212988844]
本稿では,プラグイン・アンド・プレイ方式で生成ビデオモデルを作成するためのトレーニング不要なビデオ手法を提案する。
我々は,映像モデルを隠れ状態補正モジュールを備えた自己カスケード映像拡散モデルに変換する。
私たちのトレーニングフリーの手法は、巨大な計算リソースと大規模データセットによってサポートされているトレーニングモデルにさえ匹敵するものです。
論文 参考訳(メタデータ) (2024-06-03T00:31:13Z) - Training-Free Semantic Video Composition via Pre-trained Diffusion Model [96.0168609879295]
現在のアプローチは、主に前景の色と照明を調整したビデオで訓練されており、表面的な調整以上の深い意味の相違に対処するのに苦労している。
本研究では,事前知識を付加した事前学習拡散モデルを用いた学習自由パイプラインを提案する。
実験の結果,我々のパイプラインは出力の視覚的調和とフレーム間のコヒーレンスを確実にすることがわかった。
論文 参考訳(メタデータ) (2024-01-17T13:07:22Z) - Rerender A Video: Zero-Shot Text-Guided Video-to-Video Translation [93.18163456287164]
本稿では,動画に画像モデルを適用するための新しいテキスト誘導型動画翻訳フレームワークを提案する。
我々のフレームワークは,グローバルなスタイルと局所的なテクスチャの時間的一貫性を低コストで実現している。
論文 参考訳(メタデータ) (2023-06-13T17:52:23Z) - TTVFI: Learning Trajectory-Aware Transformer for Video Frame
Interpolation [50.49396123016185]
ビデオフレーム(VFI)は、2つの連続するフレーム間の中間フレームを合成することを目的としている。
ビデオフレーム補間用トラジェクトリ対応トランス (TTVFI) を提案する。
提案手法は,4つの広く使用されているVFIベンチマークにおいて,他の最先端手法よりも優れている。
論文 参考訳(メタデータ) (2022-07-19T03:37:49Z) - ALANET: Adaptive Latent Attention Network forJoint Video Deblurring and
Interpolation [38.52446103418748]
シャープな高フレームレート映像を合成する新しいアーキテクチャであるAdaptive Latent Attention Network (ALANET)を導入する。
我々は,各フレームに最適化された表現を生成するために,潜在空間内の連続するフレーム間で自己アテンションと相互アテンションのモジュールを組み合わせる。
本手法は, より困難な問題に取り組みながら, 様々な最先端手法に対して良好に機能する。
論文 参考訳(メタデータ) (2020-08-31T21:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。