Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach
- URL: http://arxiv.org/abs/2408.15255v1
- Date: Fri, 9 Aug 2024 12:32:12 GMT
- Title: Emotion Classification from Multi-Channel EEG Signals Using HiSTN: A Hierarchical Graph-based Spatial-Temporal Approach
- Authors: Dongyang Kuang, Xinyue Song, Craig Michoski,
- Abstract summary: This study introduces a parameter-efficient network for emotion classification.
The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels.
It achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: This study introduces a parameter-efficient Hierarchical Spatial Temporal Network (HiSTN) specifically designed for the task of emotion classification using multi-channel electroencephalogram data. The network incorporates a graph hierarchy constructed from bottom-up at various abstraction levels, offering the dual advantages of enhanced task-relevant deep feature extraction and a lightweight design. The model's effectiveness is further amplified when used in conjunction with a proposed unique label smoothing method. Comprehensive benchmark experiments reveal that this combined approach yields high, balanced performance in terms of both quantitative and qualitative predictions. HiSTN, which has approximately 1,000 parameters, achieves mean F1 scores of 96.82% (valence) and 95.62% (arousal) in subject-dependent tests on the rarely-utilized 5-classification task problem from the DREAMER dataset. In the subject-independent settings, the same model yields mean F1 scores of 78.34% for valence and 81.59% for arousal. The adoption of the Sequential Top-2 Hit Rate (Seq2HR) metric highlights the significant enhancements in terms of the balance between model's quantitative and qualitative for predictions achieved through our approach when compared to training with regular one-hot labels. These improvements surpass 50% in subject-dependent tasks and 30% in subject-independent tasks. The study also includes relevant ablation studies and case explorations to further elucidate the workings of the proposed model and enhance its interpretability.
Related papers
- Kolmogorov-Arnold Neural Networks for High-Entropy Alloys Design [14.37149160708975]
Kolmogorov-Arnold Networks (KAN) is a recently developed architecture that aims to improve both the accuracy and interpretability of input features.
In this work, we explore three different datasets for HEA design and demonstrate the application of KAN for both classification and regression models.
arXiv Detail & Related papers (2024-10-11T01:48:47Z) - Multi-objective Representation for Numbers in Clinical Narratives Using CamemBERT-bio [0.9208007322096533]
This research aims to classify numerical values extracted from medical documents across seven physiological categories.
We introduce two main innovations: integrating keyword embeddings into the model and adopting a number-agnostic strategy.
We show substantial improvements in the effectiveness of CamemBERT-bio, surpassing conventional methods with an F1 score of 0.89.
arXiv Detail & Related papers (2024-05-28T01:15:21Z) - Spanning Training Progress: Temporal Dual-Depth Scoring (TDDS) for Enhanced Dataset Pruning [50.809769498312434]
We propose a novel dataset pruning method termed as Temporal Dual-Depth Scoring (TDDS)
Our method achieves 54.51% accuracy with only 10% training data, surpassing random selection by 7.83% and other comparison methods by at least 12.69%.
arXiv Detail & Related papers (2023-11-22T03:45:30Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Regularization Through Simultaneous Learning: A Case Study on Plant
Classification [0.0]
This paper introduces Simultaneous Learning, a regularization approach drawing on principles of Transfer Learning and Multi-task Learning.
We leverage auxiliary datasets with the target dataset, the UFOP-HVD, to facilitate simultaneous classification guided by a customized loss function.
Remarkably, our approach demonstrates superior performance over models without regularization.
arXiv Detail & Related papers (2023-05-22T19:44:57Z) - CAFE: Learning to Condense Dataset by Aligning Features [72.99394941348757]
We propose a novel scheme to Condense dataset by Aligning FEatures (CAFE)
At the heart of our approach is an effective strategy to align features from the real and synthetic data across various scales.
We validate the proposed CAFE across various datasets, and demonstrate that it generally outperforms the state of the art.
arXiv Detail & Related papers (2022-03-03T05:58:49Z) - A new weakly supervised approach for ALS point cloud semantic
segmentation [1.4620086904601473]
We propose a deep-learning based weakly supervised framework for semantic segmentation of ALS point clouds.
We exploit potential information from unlabeled data subject to incomplete and sparse labels.
Our method achieves an overall accuracy of 83.0% and an average F1 score of 70.0%, which have increased by 6.9% and 12.8% respectively.
arXiv Detail & Related papers (2021-10-04T14:00:23Z) - New Perspective on Progressive GANs Distillation for One-class Novelty
Detection [21.90786581579228]
Generative Adversarial Network based on thecoder-Decoder-Encoder scheme (EDE-GAN) achieves state-of-the-art performance.
New technology, Progressive Knowledge Distillation with GANs (P-KDGAN) connects two standard GANs through the designed distillation loss.
Two-step progressive learning continuously augments the performance of student GANs with improved results over single-step approach.
arXiv Detail & Related papers (2021-09-15T13:45:30Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - Towards a Competitive End-to-End Speech Recognition for CHiME-6 Dinner
Party Transcription [73.66530509749305]
In this paper, we argue that, even in difficult cases, some end-to-end approaches show performance close to the hybrid baseline.
We experimentally compare and analyze CTC-Attention versus RNN-Transducer approaches along with RNN versus Transformer architectures.
Our best end-to-end model based on RNN-Transducer, together with improved beam search, reaches quality by only 3.8% WER abs. worse than the LF-MMI TDNN-F CHiME-6 Challenge baseline.
arXiv Detail & Related papers (2020-04-22T19:08:33Z) - Adversarial Feature Hallucination Networks for Few-Shot Learning [84.31660118264514]
Adversarial Feature Hallucination Networks (AFHN) is based on conditional Wasserstein Generative Adversarial networks (cWGAN)
Two novel regularizers are incorporated into AFHN to encourage discriminability and diversity of the synthesized features.
arXiv Detail & Related papers (2020-03-30T02:43:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.