Revisiting BPR: A Replicability Study of a Common Recommender System Baseline
- URL: http://arxiv.org/abs/2409.14217v2
- Date: Fri, 18 Oct 2024 13:25:29 GMT
- Title: Revisiting BPR: A Replicability Study of a Common Recommender System Baseline
- Authors: Aleksandr Milogradskii, Oleg Lashinin, Alexander P, Marina Ananyeva, Sergey Kolesnikov,
- Abstract summary: We study the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations.
Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations.
We show that the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets.
- Score: 78.00363373925758
- License:
- Abstract: Bayesian Personalized Ranking (BPR), a collaborative filtering approach based on matrix factorization, frequently serves as a benchmark for recommender systems research. However, numerous studies often overlook the nuances of BPR implementation, claiming that it performs worse than newly proposed methods across various tasks. In this paper, we thoroughly examine the features of the BPR model, indicating their impact on its performance, and investigate open-source BPR implementations. Our analysis reveals inconsistencies between these implementations and the original BPR paper, leading to a significant decrease in performance of up to 50% for specific implementations. Furthermore, through extensive experiments on real-world datasets under modern evaluation settings, we demonstrate that with proper tuning of its hyperparameters, the BPR model can achieve performance levels close to state-of-the-art methods on the top-n recommendation tasks and even outperform them on specific datasets. Specifically, on the Million Song Dataset, the BPR model with hyperparameters tuning statistically significantly outperforms Mult-VAE by 10% in NDCG@100 with binary relevance function.
Related papers
- Rethinking Relation Extraction: Beyond Shortcuts to Generalization with a Debiased Benchmark [53.876493664396506]
Benchmarks are crucial for evaluating machine learning algorithm performance, facilitating comparison and identifying superior solutions.
This paper addresses the issue of entity bias in relation extraction tasks, where models tend to rely on entity mentions rather than context.
We propose a debiased relation extraction benchmark DREB that breaks the pseudo-correlation between entity mentions and relation types through entity replacement.
To establish a new baseline on DREB, we introduce MixDebias, a debiasing method combining data-level and model training-level techniques.
arXiv Detail & Related papers (2025-01-02T17:01:06Z) - Scenario-Wise Rec: A Multi-Scenario Recommendation Benchmark [54.93461228053298]
We introduce our benchmark, textbfScenario-Wise Rec, which comprises 6 public datasets and 12 benchmark models, along with a training and evaluation pipeline.
We aim for this benchmark to offer researchers valuable insights from prior work, enabling the development of novel models.
arXiv Detail & Related papers (2024-12-23T08:15:34Z) - UNEM: UNrolled Generalized EM for Transductive Few-Shot Learning [35.62208317531141]
We advocate and introduce the unrolling paradigm, also referred to as "learning to optimize"
Our unrolling approach covers various statistical feature distributions and pre-training paradigms.
We report comprehensive experiments, which cover a breadth of fine-grained downstream image classification tasks.
arXiv Detail & Related papers (2024-12-21T19:01:57Z) - A Distributed Collaborative Retrieval Framework Excelling in All Queries and Corpora based on Zero-shot Rank-Oriented Automatic Evaluation [46.33857318525812]
We propose a novel Distributed Collaborative Retrieval Framework (DCRF)
It integrates various retrieval models into a unified system and dynamically selects the optimal results for each user's query.
It can achieve performance comparable to effective listwise methods like RankGPT and ListT5.
arXiv Detail & Related papers (2024-12-16T14:55:57Z) - Bridging and Modeling Correlations in Pairwise Data for Direct Preference Optimization [75.1240295759264]
We propose an effective framework for Bridging and Modeling Correlations in pairwise data, named BMC.
We increase the consistency and informativeness of the pairwise preference signals through targeted modifications.
We identify that DPO alone is insufficient to model these correlations and capture nuanced variations.
arXiv Detail & Related papers (2024-08-14T11:29:47Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process.
We use Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals.
The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data.
arXiv Detail & Related papers (2024-05-01T11:10:24Z) - On Effective Scheduling of Model-based Reinforcement Learning [53.027698625496015]
We propose a framework named AutoMBPO to automatically schedule the real data ratio.
In this paper, we first theoretically analyze the role of real data in policy training, which suggests that gradually increasing the ratio of real data yields better performance.
arXiv Detail & Related papers (2021-11-16T15:24:59Z) - Understanding the Effects of Adversarial Personalized Ranking
Optimization Method on Recommendation Quality [6.197934754799158]
We model the learning characteristics of the Bayesian Personalized Ranking (BPR) and APR optimization frameworks.
We show that APR amplifies the popularity bias more than BPR due to an unbalanced number of received positive updates from short-head items.
arXiv Detail & Related papers (2021-07-29T10:22:20Z) - BEIR: A Heterogenous Benchmark for Zero-shot Evaluation of Information
Retrieval Models [41.45240621979654]
We introduce BEIR, a heterogeneous benchmark for information retrieval.
We study the effectiveness of nine state-of-the-art retrieval models in a zero-shot evaluation setup.
Dense-retrieval models are computationally more efficient but often underperform other approaches.
arXiv Detail & Related papers (2021-04-17T23:29:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.