Text classification optimization algorithm based on graph neural network
- URL: http://arxiv.org/abs/2408.15257v1
- Date: Fri, 9 Aug 2024 23:25:37 GMT
- Title: Text classification optimization algorithm based on graph neural network
- Authors: Erdi Gao, Haowei Yang, Dan Sun, Haohao Xia, Yuhan Ma, Yuanjing Zhu,
- Abstract summary: This paper introduces a text classification optimization algorithm utilizing graph neural networks.
By introducing adaptive graph construction strategy and efficient graph convolution operation, the accuracy and efficiency of text classification are effectively improved.
- Score: 0.36651088217486427
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the field of natural language processing, text classification, as a basic task, has important research value and application prospects. Traditional text classification methods usually rely on feature representations such as the bag of words model or TF-IDF, which overlook the semantic connections between words and make it challenging to grasp the deep structural details of the text. Recently, GNNs have proven to be a valuable asset for text classification tasks, thanks to their capability to handle non-Euclidean data efficiently. However, the existing text classification methods based on GNN still face challenges such as complex graph structure construction and high cost of model training. This paper introduces a text classification optimization algorithm utilizing graph neural networks. By introducing adaptive graph construction strategy and efficient graph convolution operation, the accuracy and efficiency of text classification are effectively improved. The experimental results demonstrate that the proposed method surpasses traditional approaches and existing GNN models across multiple public datasets, highlighting its superior performance and feasibility for text classification tasks.
Related papers
- A Pure Transformer Pretraining Framework on Text-attributed Graphs [50.833130854272774]
We introduce a feature-centric pretraining perspective by treating graph structure as a prior.
Our framework, Graph Sequence Pretraining with Transformer (GSPT), samples node contexts through random walks.
GSPT can be easily adapted to both node classification and link prediction, demonstrating promising empirical success on various datasets.
arXiv Detail & Related papers (2024-06-19T22:30:08Z) - ChatGraph: Interpretable Text Classification by Converting ChatGPT
Knowledge to Graphs [54.48467003509595]
ChatGPT has shown superior performance in various natural language processing (NLP) tasks.
We propose a novel framework that leverages the power of ChatGPT for specific tasks, such as text classification.
Our method provides a more transparent decision-making process compared with previous text classification methods.
arXiv Detail & Related papers (2023-05-03T19:57:43Z) - SLCNN: Sentence-Level Convolutional Neural Network for Text
Classification [0.0]
Convolutional neural network (CNN) has shown remarkable success in the task of text classification.
New baseline models have been studied for text classification using CNN.
Results have shown that the proposed models have better performance, particularly in the longer documents.
arXiv Detail & Related papers (2023-01-27T13:16:02Z) - A semantic hierarchical graph neural network for text classification [1.439766998338892]
We propose a new hierarchical graph neural network (HieGNN) which extracts corresponding information from word-level, sentence-level and document-level respectively.
Experimental results on several benchmark datasets achieve better or similar results compared to several baseline methods.
arXiv Detail & Related papers (2022-09-15T03:59:31Z) - Story Point Effort Estimation by Text Level Graph Neural Network [2.652428960991066]
Graph Neural Network is a new approach that has been applied in Natural Language Processing for text classification.
We show the potential and possible challenges of Graph Neural Network text classification in story point level estimation.
arXiv Detail & Related papers (2022-03-06T22:15:03Z) - TextRGNN: Residual Graph Neural Networks for Text Classification [13.912147013558846]
TextRGNN is an improved GNN structure that introduces residual connection to deepen the convolution network depth.
Our structure can obtain a wider node receptive field and effectively suppress the over-smoothing of node features.
It can significantly improve the classification accuracy whether in corpus level or text level, and achieve SOTA performance on a wide range of text classification datasets.
arXiv Detail & Related papers (2021-12-30T13:48:58Z) - Hierarchical Heterogeneous Graph Representation Learning for Short Text
Classification [60.233529926965836]
We propose a new method called SHINE, which is based on graph neural network (GNN) for short text classification.
First, we model the short text dataset as a hierarchical heterogeneous graph consisting of word-level component graphs.
Then, we dynamically learn a short document graph that facilitates effective label propagation among similar short texts.
arXiv Detail & Related papers (2021-10-30T05:33:05Z) - GraphFormers: GNN-nested Transformers for Representation Learning on
Textual Graph [53.70520466556453]
We propose GraphFormers, where layerwise GNN components are nested alongside the transformer blocks of language models.
With the proposed architecture, the text encoding and the graph aggregation are fused into an iterative workflow.
In addition, a progressive learning strategy is introduced, where the model is successively trained on manipulated data and original data to reinforce its capability of integrating information on graph.
arXiv Detail & Related papers (2021-05-06T12:20:41Z) - Be More with Less: Hypergraph Attention Networks for Inductive Text
Classification [56.98218530073927]
Graph neural networks (GNNs) have received increasing attention in the research community and demonstrated their promising results on this canonical task.
Despite the success, their performance could be largely jeopardized in practice since they are unable to capture high-order interaction between words.
We propose a principled model -- hypergraph attention networks (HyperGAT) which can obtain more expressive power with less computational consumption for text representation learning.
arXiv Detail & Related papers (2020-11-01T00:21:59Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.