論文の概要: S4DL: Shift-sensitive Spatial-Spectral Disentangling Learning for Hyperspectral Image Unsupervised Domain Adaptation
- arxiv url: http://arxiv.org/abs/2408.15263v1
- Date: Sun, 11 Aug 2024 15:58:24 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-01 16:42:01.566828
- Title: S4DL: Shift-sensitive Spatial-Spectral Disentangling Learning for Hyperspectral Image Unsupervised Domain Adaptation
- Title(参考訳): S4DL:ハイパースペクトル画像教師なし領域適応のためのシフト型空間スペクトル遠距離学習
- Authors: Jie Feng, Tianshu Zhang, Junpeng Zhang, Ronghua Shang, Weisheng Dong, Guangming Shi, Licheng Jiao,
- Abstract要約: ハイパースペクトル画像(HSI)分類において広く研究されている教師なし領域適応技術は、ラベル付きソースドメインデータとラベルなしターゲットドメインデータを使用することを目的としている。
シフト感応型空間スペクトル遠方学習(S4DL)手法を提案する。
いくつかのクロスステージなHSIデータセットの実験は、S4DLが最先端のUDA法よりも優れていることを一貫して検証した。
- 参考スコア(独自算出の注目度): 73.90209847296839
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised domain adaptation techniques, extensively studied in hyperspectral image (HSI) classification, aim to use labeled source domain data and unlabeled target domain data to learn domain invariant features for cross-scene classification. Compared to natural images, numerous spectral bands of HSIs provide abundant semantic information, but they also increase the domain shift significantly. In most existing methods, both explicit alignment and implicit alignment simply align feature distribution, ignoring domain information in the spectrum. We noted that when the spectral channel between source and target domains is distinguished obviously, the transfer performance of these methods tends to deteriorate. Additionally, their performance fluctuates greatly owing to the varying domain shifts across various datasets. To address these problems, a novel shift-sensitive spatial-spectral disentangling learning (S4DL) approach is proposed. In S4DL, gradient-guided spatial-spectral decomposition is designed to separate domain-specific and domain-invariant representations by generating tailored masks under the guidance of the gradient from domain classification. A shift-sensitive adaptive monitor is defined to adjust the intensity of disentangling according to the magnitude of domain shift. Furthermore, a reversible neural network is constructed to retain domain information that lies in not only in semantic but also the shallow-level detailed information. Extensive experimental results on several cross-scene HSI datasets consistently verified that S4DL is better than the state-of-the-art UDA methods. Our source code will be available at https://github.com/xdu-jjgs/S4DL.
- Abstract(参考訳): ハイパースペクトル画像(HSI)分類において広く研究されている教師なし領域適応技術は、ラベル付きソースドメインデータとラベルなしターゲットドメインデータを用いて、クロスシーン分類のためのドメイン不変性を学ぶことを目的としている。
自然画像と比較すると、多くのHSIのスペクトルバンドは豊富な意味情報を提供するが、ドメインシフトを著しく増加させる。
既存のほとんどの手法では、明示的なアライメントと暗黙的なアライメントは、単純に特徴分布をアライメントし、スペクトル内のドメイン情報を無視する。
我々は、ソース領域とターゲット領域のスペクトルチャネルが明らかに区別されている場合、これらの手法の転送性能は低下する傾向にあることを指摘した。
さらに、さまざまなデータセットにまたがるさまざまなドメインシフトにより、パフォーマンスが大きく変動する。
これらの問題に対処するために、新しいシフトセンシティブな空間スペクトル遠距離学習(S4DL)手法を提案する。
S4DLにおいて、勾配誘導型空間スペクトル分解は、領域分類から勾配の誘導の下で調整マスクを生成することにより、ドメイン固有の領域不変表現とドメイン不変表現を分離するように設計されている。
シフト感度適応モニタは、ドメインシフトの大きさに応じてアンタングルの強度を調整するために定義される。
さらに、セマンティックなだけでなく、浅いレベルの詳細な情報にも属するドメイン情報を保持するために、可逆ニューラルネットワークを構築する。
S4DL が最先端 UDA 法より優れていると断続的に検証した。
ソースコードはhttps://github.com/xdu-jjgs/S4DLで公開されます。
関連論文リスト
- Semi Supervised Heterogeneous Domain Adaptation via Disentanglement and Pseudo-Labelling [4.33404822906643]
半教師付きドメイン適応法は、ソースラベル付きドメインからの情報を利用して、少ないラベル付きターゲットドメインを一般化する。
このような設定は半教師付き不均質ドメイン適応(SSHDA)と表記される。
SHEDD(Semi-supervised Heterogeneous Domain Adaptation via Disentanglement)は,対象ドメインの学習に適したエンドツーエンドのニューラルネットワークフレームワークである。
論文 参考訳(メタデータ) (2024-06-20T08:02:49Z) - Cyclically Disentangled Feature Translation for Face Anti-spoofing [61.70377630461084]
循環不整合特徴変換ネットワーク(CDFTN)と呼ばれる新しい領域適応手法を提案する。
CDFTNは、(1)ソースドメイン不変の生長特徴と2)ドメイン固有のコンテンツ特徴とを持つ擬似ラベル付きサンプルを生成する。
ソースドメインラベルの監督の下で、合成擬似ラベル付き画像に基づいてロバスト分類器を訓練する。
論文 参考訳(メタデータ) (2022-12-07T14:12:34Z) - Multi-Scale Multi-Target Domain Adaptation for Angle Closure
Classification [50.658613573816254]
角度閉包分類のためのM2DAN(Multi-scale Multi-target Domain Adversarial Network)を提案する。
異なるスケールでのこれらのドメイン不変性に基づいて、ソースドメインで訓練されたディープモデルは、複数のターゲットドメインの角度クロージャを分類することができる。
論文 参考訳(メタデータ) (2022-08-25T15:27:55Z) - Improving Transferability of Domain Adaptation Networks Through Domain
Alignment Layers [1.3766148734487902]
マルチソースアン教師付きドメイン適応(MSDA)は、ソースモデルの袋から弱い知識を割り当てることで、ラベルのないドメインの予測子を学習することを目的としている。
我々は,DomaIn Alignment Layers (MS-DIAL) のマルチソースバージョンを予測器の異なるレベルに埋め込むことを提案する。
我々の手法は最先端のMSDA法を改善することができ、分類精度の相対利得は+30.64%に達する。
論文 参考訳(メタデータ) (2021-09-06T18:41:19Z) - AFAN: Augmented Feature Alignment Network for Cross-Domain Object
Detection [90.18752912204778]
オブジェクト検出のための教師なしドメイン適応は、多くの現実世界のアプリケーションにおいて難しい問題である。
本稿では、中間領域画像生成とドメイン・アドバイザリー・トレーニングを統合した新しい機能アライメント・ネットワーク(AFAN)を提案する。
提案手法は、類似および異種ドメイン適応の双方において、標準ベンチマークにおける最先端の手法よりも大幅に優れている。
論文 参考訳(メタデータ) (2021-06-10T05:01:20Z) - Domain Adaptation on Semantic Segmentation for Aerial Images [3.946367634483361]
セマンティックイメージセグメンテーションにおける領域シフトに対処する、新しい教師なしドメイン適応フレームワークを提案する。
また、ターゲット領域にエントロピー最小化を適用し、高信頼な予測を生成する。
様々な指標を用いて最先端手法の改善を示す。
論文 参考訳(メタデータ) (2020-12-03T20:58:27Z) - Unsupervised Cross-domain Image Classification by Distance Metric Guided
Feature Alignment [11.74643883335152]
教師なしドメイン適応は、ソースドメインからターゲットドメインに知識を転送する有望な道である。
本稿では,距離メトリックガイド機能アライメント(MetFA)を提案する。
我々のモデルは、クラス分布アライメントを統合して、ソースドメインからターゲットドメインにセマンティック知識を転送します。
論文 参考訳(メタデータ) (2020-08-19T13:36:57Z) - Simultaneous Semantic Alignment Network for Heterogeneous Domain
Adaptation [67.37606333193357]
本稿では,カテゴリ間の相関を同時に利用し,各カテゴリ毎のセントロイドを整列させるために,aSimultaneous Semantic Alignment Network (SSAN)を提案する。
対象の擬似ラベルを利用することで、各カテゴリの特徴表現を整列させるために、ロバストな三重項中心のアライメント機構を明示的に適用する。
テキスト・ツー・イメージ、画像・画像・テキスト・ツー・テキストにわたる様々なHDAタスクの実験は、最先端のHDA手法に対するSSANの優位性を検証することに成功した。
論文 参考訳(メタデータ) (2020-08-04T16:20:37Z) - Multi-source Domain Adaptation for Visual Sentiment Classification [92.53780541232773]
マルチソース・ドメイン適応(MDA)手法をMSGAN(Multi-source Sentiment Generative Adversarial Network)と呼ぶ。
複数のソースドメインからのデータを扱うために、MSGANはソースドメインとターゲットドメインの両方のデータが同じ分布を共有する、統一された感情潜在空間を見つけることを学ぶ。
4つのベンチマークデータセットで実施された大規模な実験により、MSGANは視覚的感情分類のための最先端のMDAアプローチよりも大幅に優れていることが示された。
論文 参考訳(メタデータ) (2020-01-12T08:37:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。