論文の概要: GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
- arxiv url: http://arxiv.org/abs/2408.15300v1
- Date: Tue, 27 Aug 2024 14:41:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 18:12:06.874547
- Title: GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
- Title(参考訳): GIFT-SW:LLM用サルエントウェイトを微調整したガウス雑音
- Authors: Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov, Egor Venediktov, Mariya Krylova, Aleksandr Zuev, Evgeny Burnaev,
- Abstract要約: 我々は,Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW)と呼ばれる新しいPEFT法を提案する。
本手法では, ガウス雑音を非正弦波に注入しながら, 正弦波列のみを更新する。
LLaMAモデルによる実験により、GIFT-SWは、同じ計算予算の下で、完全な微調整および現代的なPEFTメソッドよりも優れていることが示された。
- 参考スコア(独自算出の注目度): 51.02233412547456
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and democratized the usage of Large Language Models (LLMs). Recent studies have shown that a small subset of weights significantly impacts performance. Based on this observation, we introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only salient columns, while injecting Gaussian noise into non-salient ones. To identify these columns, we developeda generalized sensitivity metric that extends and unifies metrics from previous studies. Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget. Moreover, GIFT-SW offers practical advantages to recover performance of models subjected to mixed-precision quantization with keeping salient weights in full precision.
- Abstract(参考訳): パラメータ効率の良いファインチューニング(PEFT)手法が普及し、LLM(Large Language Models)の使用を民主化している。
最近の研究では、重量の小さなサブセットが性能に大きな影響を及ぼすことが示されている。
そこで本研究では,Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW) と呼ばれる新しいPEFT法を提案する。
本手法では, ガウス雑音を非正弦波に注入しながら, 正弦波列のみを更新する。
これらのコラムを識別するために、従来の研究からメトリクスを拡張し、統一する一般化感度測定法を開発した。
LLaMAモデルによる実験により、GIFT-SWは、同じ計算予算の下で、完全な微調整および現代的なPEFTメソッドよりも優れていることが示された。
さらに、GIFT-SWは、完全精度を維持しながら、混合精度の量子化を受けるモデルの性能を回復する実用的な利点を提供する。
関連論文リスト
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
IntLoRAを提案し、整数型(INT)低ランクパラメータを用いて効率限界を押し上げ、量子化拡散モデルに適応させる。
IntLoRAには3つの大きな利点がある: (i) 微調整の場合、事前トレーニングされた重みは量子化され、メモリ使用量が減少する (ii) ストレージの場合、事前トレーニングされた重みと低ランクの重みの両方が、ディスクスペースを少なく消費するINT内にある; (iii) 推論の場合、IntLoRA重みは、効率的な整数乗算やビットシフトによって自然に量子化された事前トレーニングされた重みにマージできる。
論文 参考訳(メタデータ) (2024-10-29T05:50:17Z) - Zeroth-Order Fine-Tuning of LLMs in Random Subspaces [66.27334633749734]
言語モデルのサイズが大きくなるにつれて、バックプロパゲーションに対するメモリ要求が増加する。
Zeroth-order (ZOZO) 最適化手法はメモリ効率の代替手段を提供する。
本稿では,SubZeroがファインチューニングを強化し,通常のZOZO手法と比較して高速な結果が得られることを示す。
論文 参考訳(メタデータ) (2024-10-11T17:01:43Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
微調整された事前訓練されたモデルは、リソース集約的で厳しい。
広く採用されているPEFT技術であるLoRA(Lo-Rank Adaptation)は、事前訓練されたモデルの重量を凍結する。
NEATは、トレーニング済みの重みを入力として取り込んだ軽量ニューラルネットワークを導入し、近似累積重み更新のための非線形変換を学習する。
論文 参考訳(メタデータ) (2024-10-02T17:29:23Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
TRAWL (Tensor Reduced and Approximated Weights for Large Language Models) は、複数の重み行列に対してテンソル分解を適用し、大域的な構造パターンを捉えることでLLMを効果的に分解する手法である。
我々の実験によると、TRAWLは、追加のデータやトレーニング、微調整を必要とせず、ベンチマークデータセットのベースラインモデルよりも最大16%モデル性能を向上させる。
論文 参考訳(メタデータ) (2024-06-25T04:01:32Z) - Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models [5.352221132808875]
細調整された大規模言語モデル(LLM)は、しばしば過剰な自信とキャリブレーションに悩まされる。
本稿では,Low-Rank Adaptation (LoRA) とGaussian Weight Averaging (SWAG) を組み合わせた簡単な組み合わせを提案する。
本手法は,配電系統における配電系統の性能向上を反映して,配電系統の配電系統変更に対するロバスト性が高いことを示す。
論文 参考訳(メタデータ) (2024-05-06T12:44:37Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
パラメータ行列を圧縮する手法として,データフリーなジョイントランクk近似を提案する。
キャリブレーションデータなしで、元の性能の93.43%を維持しながら80%のパラメータのモデルプルーニングを実現する。
論文 参考訳(メタデータ) (2024-02-26T05:51:47Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
モデル性能を維持しながら計算効率のよい微調整を実現するために,様々なパラメータ効率の微調整技術が提案されている。
テンソル-トレイン分解によりトレーニング可能なパラメータを大幅に削減するフレームワークであるLoRETTAを提案する。
LoRETTAは、LLaMA-2-7Bモデルで最大100倍のパラメータで、最も広く使われているPEFT法よりも同等または優れた性能を実現している。
論文 参考訳(メタデータ) (2024-02-18T01:20:00Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
大規模事前学習型言語モデル(LLM)は、様々な自然言語処理(NLP)タスクにおいて例外的な性能を示した。
しかし、これらのモデルの巨大なサイズは、現実世界のアプリケーションに展開する上で大きな課題をもたらします。
本稿では,LLMの知識を極めて小規模なモデルに効果的に伝達するRetrieval-based Knowledge Transfer (RetriKT)と呼ばれる新しい圧縮パラダイムを提案する。
論文 参考訳(メタデータ) (2023-10-24T07:58:20Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
大規模言語モデル(LLM)は、様々な言語タスクで最先端のパフォーマンスを達成しているが、実用的なデプロイメントには課題がある。
メモリ消費を削減し,LLMの推論を高速化する,効率的な重みのみの量子化法を提案する。
我々は,OPT-175Bや内部MoEモデルのような大規模オープンソースモデルに対するアプローチを評価し,スループットを最大3.65倍に向上しながら,最小限の精度の損失を示す。
論文 参考訳(メタデータ) (2023-08-16T23:57:41Z) - Neural networks with late-phase weights [66.72777753269658]
学習後期に重みのサブセットを組み込むことで,SGDの解をさらに改善できることを示す。
学習の終わりに、重み空間における空間平均を取ることにより、1つのモデルを取得する。
論文 参考訳(メタデータ) (2020-07-25T13:23:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。