GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
- URL: http://arxiv.org/abs/2408.15300v1
- Date: Tue, 27 Aug 2024 14:41:14 GMT
- Title: GIFT-SW: Gaussian noise Injected Fine-Tuning of Salient Weights for LLMs
- Authors: Maxim Zhelnin, Viktor Moskvoretskii, Egor Shvetsov, Egor Venediktov, Mariya Krylova, Aleksandr Zuev, Evgeny Burnaev,
- Abstract summary: We introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW)
Our method updates only salient columns, while injecting Gaussian noise into non-salient ones.
Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget.
- Score: 51.02233412547456
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Parameter Efficient Fine-Tuning (PEFT) methods have gained popularity and democratized the usage of Large Language Models (LLMs). Recent studies have shown that a small subset of weights significantly impacts performance. Based on this observation, we introduce a novel PEFT method, called Gaussian noise Injected Fine Tuning of Salient Weights (GIFT-SW). Our method updates only salient columns, while injecting Gaussian noise into non-salient ones. To identify these columns, we developeda generalized sensitivity metric that extends and unifies metrics from previous studies. Experiments with LLaMA models demonstrate that GIFT-SW outperforms full fine-tuning and modern PEFT methods under the same computational budget. Moreover, GIFT-SW offers practical advantages to recover performance of models subjected to mixed-precision quantization with keeping salient weights in full precision.
Related papers
- IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models [68.55148272295916]
We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
arXiv Detail & Related papers (2024-10-29T05:50:17Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models is resource-intensive and laborious.
One widely adopted PEFT technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights.
NEAT introduces a lightweight neural network that takes pre-trained weights as input and learns a nonlinear transformation to approximate cumulative weight updates.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - TRAWL: Tensor Reduced and Approximated Weights for Large Language Models [11.064868044313855]
We introduce TRAWL (Tensor Reduced and Approximated Weights for Large Language Models), a technique that applies tensor decomposition across multiple weight matrices to effectively denoise LLMs by capturing global structural patterns.
Our experiments show that TRAWL improves model performance by up to 16% over baseline models on benchmark datasets, without requiring additional data, training, or fine-tuning.
arXiv Detail & Related papers (2024-06-25T04:01:32Z) - Gaussian Stochastic Weight Averaging for Bayesian Low-Rank Adaptation of Large Language Models [5.352221132808875]
Fine-tuned Large Language Models (LLMs) often suffer from overconfidence and poor calibration.
We propose a simple combination of Low-Rank Adaptation (LoRA) with Gaussian Weight Averaging (SWAG)
We show that our method exhibits greater robustness against distribution shift, as reflected in its improved performance on out-of-distribution tasks.
arXiv Detail & Related papers (2024-05-06T12:44:37Z) - Data-freeWeight Compress and Denoise for Large Language Models [101.53420111286952]
We propose a novel approach termed Data-free Joint Rank-k Approximation for compressing the parameter matrices.
We achieve a model pruning of 80% parameters while retaining 93.43% of the original performance without any calibration data.
arXiv Detail & Related papers (2024-02-26T05:51:47Z) - LoRETTA: Low-Rank Economic Tensor-Train Adaptation for
Ultra-Low-Parameter Fine-Tuning of Large Language Models [20.5908375260123]
Various parameter-efficient fine-tuning (PEFT) techniques have been proposed to enable computationally efficient fine-tuning while maintaining model performance.
We present LoRETTA, a framework that significantly reduces trainable parameters through tensor-train decomposition.
LoRETTA achieves comparable or better performance than most widely used PEFT methods with up to $100times$ fewer parameters on the LLaMA-2-7B models.
arXiv Detail & Related papers (2024-02-18T01:20:00Z) - Retrieval-based Knowledge Transfer: An Effective Approach for Extreme
Large Language Model Compression [64.07696663255155]
Large-scale pre-trained language models (LLMs) have demonstrated exceptional performance in various natural language processing (NLP) tasks.
However, the massive size of these models poses huge challenges for their deployment in real-world applications.
We introduce a novel compression paradigm called Retrieval-based Knowledge Transfer (RetriKT) which effectively transfers the knowledge of LLMs to extremely small-scale models.
arXiv Detail & Related papers (2023-10-24T07:58:20Z) - FineQuant: Unlocking Efficiency with Fine-Grained Weight-Only
Quantization for LLMs [9.072821427818557]
Large Language Models (LLMs) have achieved state-of-the-art performance across various language tasks but pose challenges for practical deployment.
We propose an efficient weight-only quantization method that reduces memory consumption and accelerates inference for LLMs.
We evaluate our approach on large-scale open source models such as OPT-175B and internal MoE models, showcasing minimal accuracy loss while achieving up to 3.65 times higher throughput.
arXiv Detail & Related papers (2023-08-16T23:57:41Z) - Neural networks with late-phase weights [66.72777753269658]
We show that the solutions found by SGD can be further improved by ensembling a subset of the weights in late stages of learning.
At the end of learning, we obtain back a single model by taking a spatial average in weight space.
arXiv Detail & Related papers (2020-07-25T13:23:37Z) - Extrapolation for Large-batch Training in Deep Learning [72.61259487233214]
We show that a host of variations can be covered in a unified framework that we propose.
We prove the convergence of this novel scheme and rigorously evaluate its empirical performance on ResNet, LSTM, and Transformer.
arXiv Detail & Related papers (2020-06-10T08:22:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.