IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models
- URL: http://arxiv.org/abs/2410.21759v2
- Date: Wed, 30 Oct 2024 11:20:46 GMT
- Title: IntLoRA: Integral Low-rank Adaptation of Quantized Diffusion Models
- Authors: Hang Guo, Yawei Li, Tao Dai, Shu-Tao Xia, Luca Benini,
- Abstract summary: We propose IntLoRA, to push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models.
IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting.
- Score: 68.55148272295916
- License:
- Abstract: Fine-tuning large-scale text-to-image diffusion models for various downstream tasks has yielded impressive results. However, the heavy computational burdens of tuning large models prevent personal customization. Recent advances have attempted to employ parameter-efficient fine-tuning (PEFT) techniques to adapt the floating-point (FP) or quantized pre-trained weights. Nonetheless, the adaptation parameters in existing works are still restricted to FP arithmetic, hindering hardware-friendly acceleration. In this work, we propose IntLoRA, to further push the efficiency limits by using integer type (INT) low-rank parameters to adapt the quantized diffusion models. By working in the integer arithmetic, our IntLoRA offers three key advantages: (i) for fine-tuning, the pre-trained weights are quantized, reducing memory usage; (ii) for storage, both pre-trained and low-rank weights are in INT which consumes less disk space; (iii) for inference, IntLoRA weights can be naturally merged into quantized pre-trained weights through efficient integer multiplication or bit-shifting, eliminating additional post-training quantization. Extensive experiments demonstrate that IntLoRA can achieve performance on par with or even superior to the vanilla LoRA, accompanied by significant efficiency improvements. Code is available at \url{https://github.com/csguoh/IntLoRA}.
Related papers
- Minimal Ranks, Maximum Confidence: Parameter-efficient Uncertainty Quantification for LoRA [7.6400146954285315]
Low-Rank Adaptation (LoRA) enables parameter-efficient fine-tuning of large language models by decomposing weight updates into low-rank matrices.
We propose a novel parameter-efficient Bayesian LoRA, demonstrating that effective uncertainty quantification can be achieved in very low-dimensional parameter spaces.
arXiv Detail & Related papers (2025-02-17T18:46:29Z) - RoSTE: An Efficient Quantization-Aware Supervised Fine-Tuning Approach for Large Language Models [95.32315448601241]
We propose an algorithm named Rotated Straight-Through-Estimator (RoSTE)
RoSTE combines quantization-aware supervised fine-tuning (QA-SFT) with an adaptive rotation strategy to reduce activation outliers.
Our findings reveal that the prediction error is directly proportional to the quantization error of the converged weights, which can be effectively managed through an optimized rotation configuration.
arXiv Detail & Related papers (2025-02-13T06:44:33Z) - Expanding Sparse Tuning for Low Memory Usage [103.43560327427647]
We propose a method named SNELL (Sparse tuning with kerNELized LoRA) for sparse tuning with low memory usage.
To achieve low memory usage, SNELL decomposes the tunable matrix for sparsification into two learnable low-rank matrices.
A competition-based sparsification mechanism is further proposed to avoid the storage of tunable weight indexes.
arXiv Detail & Related papers (2024-11-04T04:58:20Z) - LoRTA: Low Rank Tensor Adaptation of Large Language Models [70.32218116940393]
Low Rank Adaptation (LoRA) is a popular Efficient Fine Tuning (PEFT) method.
We propose a higher-order Candecomp/Parafac (CP) decomposition, enabling a more compact and flexible representation.
Our method can achieve a reduction in the number of parameters while maintaining comparable performance.
arXiv Detail & Related papers (2024-10-05T06:59:50Z) - NEAT: Nonlinear Parameter-efficient Adaptation of Pre-trained Models [26.808251361020066]
Fine-tuning pre-trained models is resource-intensive and laborious.
One widely adopted PEFT technique, Low-Rank Adaptation (LoRA), freezes the pre-trained model weights.
NEAT introduces a lightweight neural network that takes pre-trained weights as input and learns a nonlinear transformation to approximate cumulative weight updates.
arXiv Detail & Related papers (2024-10-02T17:29:23Z) - Hyperparameter Optimization for Large Language Model Instruction-Tuning [6.743825167463901]
We study the whole pipeline of performing fine-tuning and validation on a pre-trained LLM as a blackbox.
We efficiently explore the space of hyper parameters with the nomad algorithm, achieving a boost in performance and human alignment of the tuned model.
arXiv Detail & Related papers (2023-12-01T22:03:12Z) - NUPES : Non-Uniform Post-Training Quantization via Power Exponent Search [7.971065005161565]
quantization is a technique to convert floating point representations to low bit-width fixed point representations.
We show how to learn new quantized weights over the entire quantized space.
We show the ability of the method to achieve state-of-the-art compression rates in both, data-free and data-driven configurations.
arXiv Detail & Related papers (2023-08-10T14:19:58Z) - AdaLoRA: Adaptive Budget Allocation for Parameter-Efficient Fine-Tuning [143.23123791557245]
Fine-tuning large pre-trained language models on downstream tasks has become an important paradigm in NLP.
We propose AdaLoRA, which adaptively allocates the parameter budget among weight matrices according to their importance score.
We conduct extensive experiments with several pre-trained models on natural language processing, question answering, and natural language generation to validate the effectiveness of AdaLoRA.
arXiv Detail & Related papers (2023-03-18T22:36:25Z) - LoRA: Low-Rank Adaptation of Large Language Models [71.75808607987281]
Low-Rank Adaptation, or LoRA, freezes the pre-trained model weights and injects trainable rank decomposition into each layer of the Transformer architecture.
For GPT-3, LoRA can reduce the number of trainable parameters by 10,000 times and the computation hardware requirement by 3 times compared to full fine-tuning.
arXiv Detail & Related papers (2021-06-17T17:37:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.