論文の概要: Temporal Graph Neural Network-Powered Paper Recommendation on Dynamic Citation Networks
- arxiv url: http://arxiv.org/abs/2408.15371v1
- Date: Tue, 27 Aug 2024 19:10:21 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-29 17:52:31.934798
- Title: Temporal Graph Neural Network-Powered Paper Recommendation on Dynamic Citation Networks
- Title(参考訳): 動的サイテーションネットワークにおける時間グラフニューラルネットワークを利用した紙レコメンデーション
- Authors: Junhao Shen, Mohammad Ausaf Ali Haqqani, Beichen Hu, Cheng Huang, Xihao Xie, Tsengdar Lee, Jia Zhang,
- Abstract要約: 本稿では,紙レコメンデーション戦略に時間的次元を導入する。
中心となる考え方は、新しい引用関係が現れたときに紙の埋め込みを継続的に更新することである。
リカレントニューラルネットワーク(RNN)に基づく学習可能なメモリ更新モジュールを使用して、埋め込みの進化を研究する。
- 参考スコア(独自算出の注目度): 4.666226480911492
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Due to the rapid growth of scientific publications, identifying all related reference articles in the literature has become increasingly challenging yet highly demanding. Existing methods primarily assess candidate publications from a static perspective, focusing on the content of articles and their structural information, such as citation relationships. There is a lack of research regarding how to account for the evolving impact among papers on their embeddings. Toward this goal, this paper introduces a temporal dimension to paper recommendation strategies. The core idea is to continuously update a paper's embedding when new citation relationships appear, enhancing its relevance for future recommendations. Whenever a citation relationship is added to the literature upon the publication of a paper, the embeddings of the two related papers are updated through a Temporal Graph Neural Network (TGN). A learnable memory update module based on a Recurrent Neural Network (RNN) is utilized to study the evolution of the embedding of a paper in order to predict its reference impact in a future timestamp. Such a TGN-based model learns a pattern of how people's views of the paper may evolve, aiming to guide paper recommendations more precisely. Extensive experiments on an open citation network dataset, including 313,278 articles from https://paperswithcode.com/about PaperWithCode, have demonstrated the effectiveness of the proposed approach.
- Abstract(参考訳): 科学出版物の急激な成長により、文献中のすべての関連記事の特定はますます困難になってきたが、非常に要求が高まっている。
既存の手法は、記事の内容とその構造的情報(引用関係など)に焦点をあてて、主に静的な観点から候補者の出版物を評価する。
埋め込みに関する論文の進化的影響を説明するための研究の欠如がある。
本研究の目的は,紙レコメンデーション戦略に時間的次元を導入することである。
中心となる考え方は、新しい引用関係が現れると、論文の埋め込みを継続的に更新し、将来の推奨への関連性を高めることである。
論文の発行時に文献に引用関係が付加されると、テンポラルグラフニューラルネットワーク(TGN)を介して2つの関連論文の埋め込みを更新する。
リカレントニューラルネットワーク(RNN)に基づく学習可能なメモリ更新モジュールを用いて、将来のタイムスタンプにおける参照影響を予測するために、紙の埋め込みの進化を研究する。
このようなTGNベースのモデルは、人々が論文に対する見解をどのように進化させるかのパターンを学習し、より正確に論文レコメンデーションを導くことを目的としている。
https://paperswithcode.com/about PaperWithCodeの313,278記事を含むオープンな引用ネットワークデータセットに関する大規模な実験は、提案手法の有効性を実証した。
関連論文リスト
- CausalCite: A Causal Formulation of Paper Citations [80.82622421055734]
CausalCiteは紙の意義を測定するための新しい方法だ。
これは、従来のマッチングフレームワークを高次元のテキスト埋め込みに適応させる、新しい因果推論手法であるTextMatchに基づいている。
科学専門家が報告した紙衝撃と高い相関性など,各種基準におけるCausalCiteの有効性を実証する。
論文 参考訳(メタデータ) (2023-11-05T23:09:39Z) - Modeling Dynamic Heterogeneous Graph and Node Importance for Future
Citation Prediction [26.391252682418607]
論文の今後の引用傾向を予測するための動的ヘテロジニアスグラフとノード重要度ネットワーク(DGNI)学習フレームワークを提案する。
まず、学術ネットワーク全体の動的進化傾向を捉えるために、動的ヘテロジニアスネットワーク埋め込みモジュールが提供される。
各論文のノード重要度を明らかにするために,グローバルな一貫性関係を捉えるために,ノード重要度埋め込みモジュールを提案する。
論文 参考訳(メタデータ) (2023-05-27T08:53:26Z) - H2CGL: Modeling Dynamics of Citation Network for Impact Prediction [13.00224680454585]
対象論文の階層的および異質なグラフを年次視点で構築する。
このグラフは、対象論文の科学的文脈情報の年次動態を記録することができる。
階層型および不均一なグラフ学習モデルであるグラフニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2023-04-16T13:04:32Z) - Scientific Paper Extractive Summarization Enhanced by Citation Graphs [50.19266650000948]
我々は、引用グラフを活用して、異なる設定下での科学的論文の抽出要約を改善することに重点を置いている。
予備的な結果は、単純な教師なしフレームワークであっても、引用グラフが有用であることを示している。
そこで我々は,大規模ラベル付きデータが利用可能である場合のタスクにおいて,より正確な結果を得るために,グラフベースのスーパービジョン・サムライゼーション・モデル(GSS)を提案する。
論文 参考訳(メタデータ) (2022-12-08T11:53:12Z) - Tag-Aware Document Representation for Research Paper Recommendation [68.8204255655161]
本稿では,ユーザによって割り当てられたソーシャルタグに基づいて,研究論文の深い意味表現を活用するハイブリッドアプローチを提案する。
提案手法は,評価データが極めて少ない場合でも研究論文の推薦に有効である。
論文 参考訳(メタデータ) (2022-09-08T09:13:07Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
強化学習(TMER-RL)を活用した新しい時間的メタパスガイド型説明可能な勧告を提案する。
TMER-RLは, 動的知識グラフ上での動的ユーザ・イテム進化を逐次モデル化するために, 注意機構を持つ連続項目間の強化項目・イテムパスをモデル化する。
2つの実世界のデータセットに対するTMERの大規模な評価は、最近の強いベースラインと比較して最先端のパフォーマンスを示している。
論文 参考訳(メタデータ) (2021-11-24T04:34:26Z) - CitationIE: Leveraging the Citation Graph for Scientific Information
Extraction [89.33938657493765]
引用論文と引用論文の参照リンクの引用グラフを使用する。
最先端技術に対するエンド・ツー・エンドの情報抽出の大幅な改善を観察する。
論文 参考訳(メタデータ) (2021-06-03T03:00:12Z) - Enhancing Scientific Papers Summarization with Citation Graph [78.65955304229863]
引用グラフを用いて科学論文の要約作業を再定義します。
我々は,141kの研究論文を異なる領域に格納した,新しい科学論文要約データセットセマンティックスタディネットワーク(ssn)を構築した。
我々のモデルは、事前訓練されたモデルと比較して競争性能を達成することができる。
論文 参考訳(メタデータ) (2021-04-07T11:13:35Z) - Structured Citation Trend Prediction Using Graph Neural Networks [6.325999141414098]
本論文では,公開時に論文のトップセットを予測するGNNベースのアーキテクチャを提案する。
実験では,さまざまなカンファレンスを対象とした学術的引用グラフの集合をキュレートし,提案モデルがF1スコアで他の古典的機械学習モデルより優れていることを示す。
論文 参考訳(メタデータ) (2021-04-06T14:58:29Z) - Longitudinal Citation Prediction using Temporal Graph Neural Networks [27.589741169713825]
シーケンス引用予測のタスクを紹介します。
目標は、学術研究が経時的に受ける引用回数の軌跡を正確に予測することである。
論文 参考訳(メタデータ) (2020-12-10T15:25:16Z) - Learning Neural Textual Representations for Citation Recommendation [7.227232362460348]
サブモジュラースコアリング機能において,シームズとトリプルトネットワークを併用した文書(センテンス-BERT)の深部表現を用いた引用推薦手法を提案する。
我々の知る限りでは、これは引用推薦のタスクに対して、ディープ表現とサブモジュラー選択を組み合わせるための最初のアプローチである。
論文 参考訳(メタデータ) (2020-07-08T12:38:50Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。